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Analysis of the similarities and differences among the Hfickel and Pariser-Parr-Pople-type 
methods is extended mainly through development for special molecular cases of closed form 
expressions for the self-consistent wavefunetions. By means of these expressions the various 
contributions of terms in the Hamiltonian to charge densities, bond orders and other related 
quantities may be compared term-by-term among the methods. Results on several direct 
observables, e.g. ionization potentials, electron affinities, bond lengths are similarly dissected. 
Simplified procedures for generation of the self-consistent charge densities and bond orders 
from their zeroth-order counterparts in the PPP method are detailed. 

Fiir Molekfile spezieller Symmetric werden geschlossene Ausdriicke fiir 'self-consistent'- 
Weltenfunktionen entwiekdt. Aus ihnen lassen sieh einfache explizite Reiheneutwicklungen 
ffir Gr6Ben wie Ladungsdichte, Bindungsordnung, Ionisierungsenergie usw. erhalten. Die Ver- 
wandtsehaft verschiedener MO-Methoden (HMO, ~-HMO, PPP) kann so eingehend analysiert 
werden. 

L'analyse des similitudes et des diff6renees entre les m6thodes de Hiickel et celles du type 
Pariser-Parr-Pople est 61argie essentiellement par l'6tablissement d'expressions implicites pour 
les fonctions d'onde self-consistantes dans des cas mol6culaires particuliers. A l'aide de ces 
expressions les contributions des diff6rents termes de l'Hamiltonien aux densit6s de charges, 
indices de liaison et autres quantit6s qui leurs sont li6es, peuvent 6tre compar6es terme & terme 
entre les m6thodes. Les r6sultats concernant diff6rentes observables directes eomme les 
potentiels d'ionisation, les affinit6s 6lectroniques et les longueurs de liaison sont analys6s de 
la m6me mani~re. Des proc6d6s simplifi6s, qui permettent d'engendrer darts la m6thode Pariser- 
Parr-Pople les densit6s de charge et les indices de liaison self-consistants & partir des quantit6s 
correspondantes ~ l'ordre z6ro, sont expos6s. 

1. Introduction 
Inclus ion of  e lect ron repuls ion te rms  in the  H a m i l t o n i a n  used to  compute  

z -e lec t ron  wavefunct ions  for large hyd roca rbon  molecules has r emoved  i m p o r t a n t  
conceptual  deficiencies of  ear l ier  semi-empir ica l  MO methods .  This was the  m a j o r  
in t en t ion  of PA~ISER and  P A ~  [1] and  POPLE [2] who were or iginal ly  responsible  
for deve lopment  of app rox ima t ions  for the  repuls ion terms.  I n  fact ,  a balance was 
sought  be tween  incorpora t ion  of  the  mos t  i m p o r t a n t  e lect ron-elect ron in te rac t ions  
and  ma in tenance  of  the  re la t ive  s impl ic i ty  of  wavefunct ion  calculat ions charae-  
ter is t ic  of the  s impler  MO methods .  This desire for s impl ic i ty  was fulfilled, a t  

least  for the  zero th-order  wavefunct ions .  
However ,  since the i r  me thods  are based  upon  self-consistent  o rb i ta l  equat ions  

[3], the  single d e t e r m i n a n t  funct ions  should be made  in t e rna l ly  self-consistent .  I t  

* Research performed under the auspices of the U.S. Atomic Energy Commission. 
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is at this point tha t  the complexity of the calculations, in the sense of the number 
of arithmetic manipulations necessary, m a y  substantially increase relative to 
those of simple (H/ickel) theory, with which, it seems, improved large molecule- 
theories are inevitably compared. 

I t  is the purpose of this paper to extend the analysis of differences between the 
explicit versus averaged electron repulsion Hamiltonian methods, with particular 
emphasis on how charge distributions are determined and what effects accrue upon 
imposition of self-consistency procedures. Special molecular cases may  be chosen 
where the S.C.F. procedures typically affect the wavefunctions derived, but where 
the usual iterative techniques employed may  be replaced through analytic summa- 
tion methods by  closed form expressions which yield good approximations to the 
results obtainable by  cycling. From these and the zeroth-order functions for these 
molecules one may  seek a more detailed understanding of how various terms in the 
Hamiltonian enter the wavefunetion computation and ultimately determine 
various theoretically predicted properties of the molecular state. These results 
may  then be compared., term-by-term, with the ttiickel results rather than only as 
composites and at the end of the calculation% Also included where pertinent are 
the results of an improved version of Uiickel theory, i.e. the od-technique, wherein 
self-consistency procedures are employed and which has been the subject of 
previous dosed form analysis [8]. 

2. Theory 
a) General Features 

In  the LCAO MO method, the i-th molecular orbital is expressed in terms of 
the atomic orbitais, 

where the equations which determine the /~-th A0 coefficients are, under the 
variational principle, 

y 

Neglecting differential overlap, 

F ~  c~ = W~ ~i,~. (3) 
y 

In  the Pariser-Parr and Pople (PPP) formulations where, in addition to the 
overlap approximation and the assumption of a constant nndeformable ~-eore, 
all electron interaction integrals other than 

are neglected, the pertinent matr ix  elements become: 

F,,~ = U, + �89 q, y , ,  § ~ (q. - t) y , , ,  (4) 

* Several useful reviews of other efforts to explore relations among tIiickel theory and a 
succession of improved theories originating with the Pariser-Parr-Pople methods have recently 
appeared [l - 7]. While most of the work cited has been primarily concerned with problems 
of parameterization iJa the various methods, some complimentary to that reported here is 
directed to analysis of the comparative mechanics and toward possible simplifications of the 
methods. 
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== i % ,  (6)  

i 

The zeroth-order elements are computed from the semi-empirical values 
derived for Us, the electron-core interaction energy, fls, the resonance integral 
which is non-zero only for neighboring, and generally formally s-bonded sites, and 
y,~, and from the q's and p's  obtained from the Hfickel vectors for the pertinent 
molecule. Frost  these elements, the matr ix  of Eqs. (3) are solved yielding the first 
order set of AO coefficients. The latter, in combination with the integral values 
already used allow computation of a new set of interaction elements, which in turn 
yield a new set of coefficients. The cycling procedure is continued until the AO 
coefficients no longer change. 

b) Applications in Special Molecular Cases 

In  totally symmetric molecules, i.e. those with all A0  sites equivalent and with 
rotational symmetry  of the same order as the number of sites, the AO coefficients 
in each M0 are symmetry  determined and, hence, by  Eqs. (6) and (7), so are the 
q's and p's. The self-consistency procedure is therefore convergent in a single cycle 
and, importantly,  by virtue of symmetry  demands, the wave function coefficients 
are identical with those obtained by  the tIfickel method. In  the more interesting 
cases for our purposes, where all AO sites are not the same, differences in the 
coefficients will be noted. These differences in turn result in charge density and 
bond order differences and, hence, in differences in the first- and higher-order 
energies and associated quantities computed. When we restrict ourselves to 
molecular cases where two different types of AO sites are present these differences 
may be followed analytically in much the same manner as they were under the 
(o-technique analysis. Following Ref. [8], we a.gain distinguish between geometric 
and constitutional A0-site differences and, because of present uncertainties in 
heteroatom integrals, mainly restrict ourselves to consideration of cases of the 
former type. 

For these cases, the matr ix  of Eqs. (3) of general order equal to the number of 
~-AO in the molecule m a y  be reduced by  use of symmetry  orbital representations 
to a number of matrices of lower order, each with two blocks centered on the 
matr ix  diagonal, representing like-atom interactions, and with off-diagonal 
blocks for unlike-atom interactions. I f  advantage is taken of the fifll symmetry  of 
the like-atom arrangements, matrices of order 2 result* from transformation of 

Eqs. (3) to 

~ i A A  ViA @ ~ t A B  C~B = Et  ~ A  �9 (8) 

The ~ - t e r m s  arise from the Hamiltonian operating on the symmetry  orbita]s, 
Z, where ZA and ZB are respectively the orbitals for the sites of types A and B, 

�9 Having only two types of sites is a necessary but not a sufficient condition for this reduc- 
tion ~o order 2 matrices. Apparently, at least for planar molecules, which are of principal 
concern here, unless ~he in-plane rotational symmetry is of the same order as the number of 
individual sites of the more numerous type, matrices of higher order may be unavoidable. 
Cf. Tab. 1, case II: with the exception of the sub-cases shown which are reducible to order 2, 
no other molecules meeting the first but not the second condition will be considered. 
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~ , = C t a Z i A + C * e X i B = C i A  ~ a , j g j + O i B  ~ b , ~ e ,  (9) 
] = a l i A  k=aI1B 

and 

; Z~A HZIA dV : ~iAA , f Z*A HZ~BdV = .~AB . (t0) 

From Eqs. (8) one may readily show that  

1 
(Ea~ + (12) : , ~ "  i A B ] ]  

where z ] /=  ~ B B  -- ~t.~A, and the • has its usual bonding, antibonding orbital 
distinction. Since 

' ~  - ~ ~ ( 4  ~: 1/4 + ~ ~ . )  - ~ ~ 5 .  4 

and cA = C~A aiu for sites of type A and e B = C~n biu for sites of type B, then the 
charge density difference components of Eq. (6) may be obtained : 

{ (a~+b~lA~ } 
(~)~ - (e~)~ = } •  + ( G  - G )  �9 (~)  

The sites ~' and k may be arbitrarily chosen since all sites of a given type will by 
definition have the same charge density. 

In a completely analogous manner the bond order components may be derived : 
A B 

e i j  e l k  - -  �9 

if  the symmetry orbital function over type B is nodal Eq. (i4) reduces to --aii 
at the site k, and to b~ if the function over type A is nodal at site ]. Similar straight- 
forward results are obtained for the bond order components in the event of such 
nodal• 

c) Linearization o/the Charge Density and Bond Order Relations 
We will now recognize conditions of apparently ~dde generality which allow 

simplification of relations 14 - i7 for the special molecular cases of interest. 
In  the event that  1 df ] < I 2 ~'~AB ], the square root terms of these equations 

may be expanded and truncated: 

,~ ik-- -+ ~ ~J - ~ h B ) } ,  ( i9)  

oa 4 = } a ,  a~ {1 ~ (dd2 J~A~)} (20) 

I f  the changes in ~J~ and ~ A B  resulting from cycling are of the same order of 
magnitude, or if those in the former are greater than in the latter, which, as we 
shall see, holds generally, then in terms of the small-difference equation 

0X ~X 
c~ X(di, J~AB) = ~ d(Ad + a ~A--. 5(~IAB), (22) 
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we find Eqs. ( t8--2t)  are, to very good approximations, linear difference equa- 
tions in the single variable, z]~. For example, from Eq. (t8), 

The difference equation corresponding to Eq. (19), on the other hand, while 
linear in d(Ad has a very small coefficient, i.e. -zli/8 o~2iAB, and hence c A ci~ is 
essentially constant upon cycling under these conditions. 

In the event A~ and ,~,~AB are of the same order of magnitude but where 

z]i = ~/3 + zJi, with ~B/3 constant ~-ith cycling, and ]/~ 1< ] 2 ~-~AB I, then again 

expanding and truncating Eqs. (t4--17) after the first-power term in A-i, 

(cB) ~ -- (ciA) 2 = �89 (b~k -- ai}) +_ (ai} ~-~ bi~,) [X~/2 § X~/~- ~i  , (23) 

2a,i a,~ ~ ' iAz  Xi 4- Vit? X~/~ 

2 5X'iA B 2 5~ ~A B + X~./~ ~ . (26) 

[-Iere, X~ = [(~]~fl)2 ~_ 4 ~-~AZ], and ~ifl symbolizes intra-type integrals, or sums or 
differences of such integrals arising from O~iBB -- ~'~AA. I t  should, of course, also 
be recogv_ized that  if~ifl is zero, Eqs. (23--26) reduce to Eqs. (~.8--21), and, more- 
over, that  the former are capable of directly producing the zeroth-order Hiiekel 

0 -0  charge density and bond order components, where ~iA~ = (~1#3) ~ and A i = 0 are 
the Hiickel matrix elements. Again, if the effects of cycling are small and if the 

changes in z]i are not orders of magnitude smaller than O~tAB, Eqs. (23--26) are 

also single variable equations and are linear in the variable z~i. As before c A c B 
will be more weakly dependent upon cycling changes in A~ than the other coeffi- 

cient terms, here mainly because its zli coefficient is relatively much smaller. E.g. 
if ~]~/3 = O~/A~, which constitutes a most unusual and unfavorable ease, the 

coefficient of z~t in Eq. (24) will be roughly an order of magnitude smaller than in 
Eqs. (23), (25) and (26). 

d) Analytic Linear Interrelations among Charge Density, Bond Order and Components 
o /Energy  

Upon consideration of the matrix elements, LJi and J i A Z ,  several important 
generalizations concerning their nature may be drawn. The former, LJi, is the 
difference between interaction elements Y~BB and ~"IAA, each of which is the 
combination of F ~  and F~, [Eqs. (4) and (5)] arising from the symmetry orbitals 
over atoms of type A or B, where all # and v are either of type A or B. On the 
other hand, 37iAB is the cross-term expressing the interactions between atoms of 
different ~ypes in the different symmetry orbitals; hence, this term will be a com~ 
bination of 2'~ terms oniy, where # and v must be A and B. These generalizations 
may be expressed symbolically as follows, 
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A~ == FB~ -- FAA + ~ Z~ZB' FBB' -- ~ Z~AA I FAd'  , (27) 
B,B t A ,A  ~ 

B # B  t A # A  I 

~ i A B  = ~ T i A B  F A B  . ( 2 8 )  
A , B  

Note, since the symmetry orbitals are normalized, the coefficients of FAA and 
FBB are unity. From Eqs. (4) and (5), remembering that  all sites of the same type 
have the same charge density and that  the r-coefficients arc symmetry orbital 
determined and therefore unchanged upon cycling, we may write, 

A~ = lc + m~,qB -- mAqA 5 ~ TiBB' (flZB' -- �89 PBB' )~BB') - -  

- -  ~,  T i A A  1 ( ~ A A '  - -  1 p A A '  ~ A A ' )  (29) 
= (Ti~) + K + M(qB -- qA) + ~ (T,  BB' PBB' - T i A A  r ~gAA') , 

~-,A~ = ~ Z, AB (~AB -- �89 PA, VAB) = K~ + ~ T, AB pA~. (30) 

The second equality in Eq. (29) is obtained from the first by resolving mBqB -- mAqA 

in terms of M(qB - qA) + k'(nAqA + neqB) where nA and nB are the number of 
sites of the specified types : the latter term is of course constant and known since 
~AqA + nBqB iS equal to the total number of ~-electrons in the molecule. 

e is higher-order-dependent to Recalling from Eqs. (19) and (24) that  c~ c.~ 
cycling changes than the other coefficient product terms, we may assume within 
our first-order treatment that  ~ i A B  is constant. Therefore, our earlier assumption 
of the order of magnitude difference under cycling changes between A, and ~iAB 
is shown justified, and the following general conclusions may be drawn. The 
interaction parameters, zJi, are approximate linear functions, upon cycling, of Aq 
(i.e., qB -- qA) and of the bond orders, PAA' and pBB'. The latter arc, in turn, 
approximate linear functions of A~ through the near-linear functionality upon Ai 

(cA~2 A A and c~ cB~. Hence, the following of their respective components, (ci~)2 - ~ ij, , cij cik 
interrelation scheme pertains for the second, the more general, condition outlined 
above, under the tacit assumption that  the expansion-truncation conditions are 
met in passing from the zeroth- to the first-order coefficient set : 

o e e .  

i 

o c t .  

p ~ ( B B ' )  p~m(AA') o 
- -  = Apjkz~ n + 2 ~ n~ { + (b~j bi~ + a~ a~m) ~z-~ ~ . ~ / ~  ~t  (32) _ o'- iABlX~.i f J i  

i 

d l  +~ = Tiff + K + M A q  t + Z ( TiBB' p tB ,  -- T*AA" ptAA,) . (33) 
A , B  

In  these equations, the t-exponents indicate the cycle number, n, signifies the 
number of electrons in orbital i, and ~ I A B  iS constant after the first cycle if Tiff is 
zero or after the second cycle ~f T~fi is non-zero. Natural pairs (or upon occasion 
when the number of sites of types A and B are not the same in the molecule, 
multiplets) of bond orders exist which allow direct simplification of Eqs. (32) and 
thereby indirect simplification of Eqs. (33). E.g. for molecules where only constitu- 
tional differences exist between site types which are present in equal number, 
complete pairing may be made where not only are all Ap0 equal to zero, but where 
ait aim is equal to b o. b,~ and ~' ' pI~(BB ) + p~m(AA') is constant upon cycling. These 
simplifications may be construed in the following representation of Eqs. (3t--33) : 
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OCO, 

i 

p a i r s  _ _  

At +~ = K~ + ~ T~j~ A p ~  . (35) 

~ere  Aq is included as a Ap-term, i.e. p~ - p~; for all, the subscripts )" and k are 
given with the natural pairing (with bond order between sites l and m) implicit. The 

z~l-coefficicnts of Eqs. (31) and (32) are symbolized as 

Y~, 
K~ = K + ~fl  + ~ (Ti~ - T .m)  (p~ + p~m)12, 

Ti~  = (T~r + Ticm)/2 �9 

For the cases where more ~han a consbi$utional difference exists, or where there 
are an unequal number of sites, the simplifications wiU be somewhat different, but  
the forms of Eqs. (34) and (35) will still pertain. Examination of specific cases, 
below, will make the choice of pairings and the nature of the simplified coefficients 
more obvious. 

3. Change Densities and Bond Orders from Self-Consistent Wavefunetions by 
Closed-Form Approximation 

a) Charge Densities: Their Computation and Some Implications to Direct Observables 
I f  Eqs. (34) and (35) are cycled against each other conventionally, the following 

general relationships are obtained after t-cycles : 

- -  0 

Ap~ k = Api~ + ~ Yi]k(KZ + Tiik Apiu) 4" 
i 

- -  0 ] 4. Z Y~ik { Z  Til~ [Z Y~z (Ki + Ti~Api~)j } 4- . . .  4- (36) 
i i,k i 

i j,~ i 3",~ i 

At +1 = Ki 4. Z TJjk Ap}~ . (37) 

I t  is quickly apparent that  the complex, repeated sums of Eq. (36) are not 
amenable to direct general solution if more than one dp- term must be considered. 
We may, however, take advantage of a corollary of the pair simplification proce- 
dure for Ap-terms which allows further simplifications for cycling. The impolgant 
factors of high symmetry for the molecules of concern and wavefunction nodalities, 
which provided simpler expressions for Ap than for the individual p-terms, also 
provide, upon proper combination, functions of Apjk which depend strongly on 
cycling only for certain bn~ not all combinations of ~ mid k. Tab. 1--4 contain the 
cycling equation coefficients for a variety of molecules, both real and hypothetical, 
which are typicM of the cases of present interest and illustrate the ways these com- 
binations may be made. 

Tab. I displays the constant and change density difference dependence of AI, 

terms which are independent of the orbital, i. In  terms of Eq. (35), M is Tz~2 = 
= (T2u 4. Tll)/2. One may readily show in general that  
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+ - -  [(nAql + nsq2)/(nA + X --  72.)" (39) 
#~a]l 
sites 

In Tab. 2 are the constant intra-site energy terms N~, and the Ap-terms upon 

which the z]~ depend and which are orbital level dependent. The latter have been 
grouped to conform to Eq. (35), and their dependencies as expressed in Eq. (34) 
are displayed in Tab. 3. In Tab. 4, the inter-site (AB) interaction energy and bond 
order relations are given. In all cases where possible, the symmetry orbital repre- 
sentations of the starting wavefunctions were constructed in their imaginary 
forms, yielding the results, all in real forms, shown in these tables. 

I t  is apparent that  in all cases examined here, and seemingly general for all 
molecules of such high symmetry, the ~ T. p terms of Eq. (33) are resolvable into 
Ap and pair- (or multiplet-) sum-p terms, where the latter are zero, and where all 
remaining p-terms "which are not combinable are found to behave as hq for the 
purpose of cycling (of. the molecules of type II). Moreover, the zip terms are them- 

selves simple functions of z]t, and because of the wavefunction nodalities which 
determine their coef~cients, these Ap terms are strongly out o/ phase with each other. 
This latter point which is essential to our ultimate ability to achieve closed forms 
for cycling may be :more specifically illustrated taking the molecules of type I as 
examples. 

~or  these rings where only a constitutional difference exists between the atoms 
of type A and B, the various Ap~, 2~+2 have common dependence upon the sum of 

quotients, zJi/~-~, but  differ in phase by  the factors cos (2silim) applied to each 
term in the stun. Examination of the sums for the neutral molecules is illuminating: 

Aq t+l = m-~ X A~+II'~'~ 

= Constant -~ Mm -1 Aq t ~ (~i) -1 -- 
i 

_ + 

~ ./ ) 
| A ~t+l 2siL x%~L+2 = m-1 . cos /~- i  

i=1\ 77b 

= C o n s t a n t + M m  -1Aq t ~  cos -- / ~  -- 
7 �9 qTb 

m-I ( 2zUl 2ziL ) 
-- (40n)-1/,=1 ~ (~2'2l+2 ~- ~/1,2l+1) z~p t, 2l+2 ~. COS ~q~ c o s  ~t / ~- i  �9 (41) 

Here, Aq has been separated from the Ap-terms for clarity; it obviously has the 
same form with L := 0, although not an obviously related coefficient, ttowever, 
upon examination of Tab. i and 2, with insertion of numerical values for the 
contributing 97s, we conclude that  I i [ >  1�88 (~, ~§ + 9~, ~+~) ] generally for 
any 1 and m, and further, directing our attention to the Aq-equation, tha t  
I M ~ ( ~ ) - ~  [ is an order of magnitude greater than I 4-~ (~, ~+~ -k y~, 2l+1)" 
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�9 ~ cos 2=il / ~  ]. This imphes that  the major dependence of ~q upon eychng is 
m 

on Aq itself, with only secondary mixing of the various bond-order difference 
terms. 

Therefore, to a fair approximation, 

Aq t+l = Constant + { M m  -1 ~ (~-i) -1} Aq t . (42) 

More specifically, 

Aq 0 (43) 

where d 0 is the Hiickel Coulomb integral difference, c~y - ax.  

A~,+~ =__~ ~: K + ~ ,  _ ~ + MA~, ~ (~ )_~  (44) 
m i=1 (~0 m i=~ 

for all t, and J i  is unchanged upon iteration after cycle i (vide supra). We may 
obtain the next higher order to improve our approximation without changing the 
form of Eq. (44) by recognizing that  the rip's will be subject to variations upon 
cycling which are on the same order or smaller than those in Aq. Hence, an effective 
M (M') may be defined which incorporates the bond order contributions for the 
first cycle as a good approximation to the bond order contributions to all following 
cycles. I.e., 

K + M'z~q ~ 5 ( ~ i )  - I  -- K + MzJq ~ 5 (~";)-1 _ 
m i m i 

- (4m)-1 ~l (y2, 2z+2 + y~, ~+~) P2,2~+2 ~. cos ~ / 

Symbolizing m -1 ~ (~i)  -1 as A, it is immediately apparent that  Aq is a geometric 
progression with initial (Hfickel) parameter residues, 

Aqt+l = K ItS1 (AM')J] + (AM')'+1Ao/J o . (46) 
-~/ '  L]=I  

For [ A M '  [ < l, the converged value for Aq is 

Aq ~176 = K A / ( I  - A M ' ) .  (47) 

A 0 is of course (2~m)-11 ~ cos -1 - -  . In  a similar manner self-consistent bond 
m 

order relations may be generated (vide in/ra). 
Tab. 5 displays some test results for the ring, m = 5, with/J0 and K both chosen 

as 0.i  eV. These and the other parameter values shown in the Table conform fairly 
closely to the PoPLE values for hydrocarbons [2] and may be thought of as being 
representative of a ten-membered planar hydrocarbon ring with alternative atoms 
substituted by some weak purely inductive groups. The Hfickel-~o-technique 
results are included for comparison. These results directly indicate several impor- 
tant  procedural points and as well suggest some possible generalizations concerning 
the P P P  method and contrasts with methods where averaged repulsions are 
employed. 

The electron interactions responsible for the negative value of M are instru- 
mental in increasing the charge disparity over that  predicted by the zeroth-order 
Hfickel Itamiltonian, i.e. --0.04762 vs. - 0 .04 i6 i .  The value of LJq continues to 
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increase upon  approach  to the  self consis tent  orbi ta ls ,  wi th  the  Ziq~ roughly  40% 
grea ter  t h a n  the  f i rs t -order  resu]t.  

Comple te ly  ignoring the  effects of the  bond  order  t e rms  one ob ta ins  resul ts  
which no t i ceab ly  unde res t ima te  the  s t rength  of  the  repulsions,  a l though the  
correct  qua l i t a t ive  behavior  is predic ted .  B y  increasing the  value  of M b y  abou t  
10%, as prescr ibed  above  for M ' ,  the  first- and  subsequent  h igher-order  resul ts  
are r eproduced  essent ia l ly  quan t i t a t ive ly .  Whi le  i t  does not  seem possible to  
general ize abou t  the  re la t ive  size of  M-correct ions ,  i t  does seem l ikely  t h a t  such 
correct ions will be possible based  upon  the  first order  resul ts  and  t h a t  t h e y  gener- 
a l ly  will be smal ler  t h a n  the  original M i tself  due to phase  considerat ions.  

Table 5. Charge Density Di//erenees /or Molecular Case I,  
m = 5, with A 0 = 0A eV 

Aq t 
Cycle No. Eq. 38" Eq. 42 (M = -3.9) b (M' = -4.33) Hiiekel-~oo 

0 -0.04161 -0.04161 -0.04161 -0.04161 
1 -0.04762 -0.04459 -0.04762 +0.01032 
2 -0.0521~ -0.04656 -0.05205 --0.05449 
3 -0.05552 -0.04787 -0.05531 
4 -0.05813 -0.04874 -0.05771 

oo -0 .0665  d- -0.0505e -0.0644 -0.0185 

All terms; essentially identical with results obtainable by conventionM cycling of the 
secular equations. 

b M - (711 + Y22)/4 - 2Y12 + 2Y13 - 2Y1~ + 2y1~ - Y16 = 5.26 - t4.60 + 10.40 - 9.20 + 
+ 7.80 - 3.5 in eV. 

m l  
czj~+l =Z] ~ _ ogflozJqt;zJq~ = (2mfl~ -1/]~ ~ ices-1 ~i ! i= l i  ~ ;-- m/~0 = + 3.0eV. 

a Average from geometric extrapolations using points i ,  2 and 3 and points 2, 3, 4. The 
difference between resu:lts from these two sets is 0.0004. 

From Eq. 45. 
Back-extrapolation of divergent results, cf., Ref. [8], part II ,  Eq. 9. 

On the  other  hand,  the  co-technique, wherein  e lect ron repulsions are suppos- 
edly  averaged,  predic ts  a decrease of  the  original  charge d i spa r i t y  upon a t t a i n m e n t  
of self-consistent  orbi tals .  This is genera l ly  the  resul t  of th is  m e t h o d  and arises 
from the  posi t ive  value for -co/~ ~ con t ras ted  to  the  negat ive  value of  M [cf., 
footnote  c of Tab.  5 and,  in contrast ,  Eq.  (42)]. The fact  t h a t  convent iona l  cycling 
produces  divergence is a mechanical  resul t  ; the  AqttC~ficke I and  zi~ckel values r epor t ed  
(the l a t t e r  is 0.0445 eV) correspond to self-consistent  orbi ta ls  for this  sys tem and  
hence are app rop r i a t e  for our comparisons.  

I t  is a p p a r e n t  fi:om examina t ion  of  Eq.  (38) which contains  the  general  ex- 
pression for M for the  two-s i te  t ype  systems,  as well as of  footnote  b of  Tab.  5, 
t h a t  M will be negat ive  as long as the  sum of repuls ion te rms  be tween  unlike sites 
is grea ter  t han  the  sum of  such te rms  be tween like sites. A negat ive  value  of  M as 
we have  jus t  seen will resul t  in an increase r a the r  t han  a d imuni t ion  in Aq, neclect-  
ing the  r e l a t ive ly  smal ler  effects of the  Zip terms.  The i m p o r t a n t  quest ions which 
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are posed therefore are, under what circumstances will M be negative, and how 
for the cases where it is negative can the co-technique whieh operates with what is 
essentially a positive M be reconciled. 

I t  is quite clear tha t  M will be negative as long as unlike sites are on the 
average geometrically closer to eaeh other than  are like sites in the pertinent 
molecules. This requirement must  be somewhat strengthened in tha t  the self- 
repulsion term, i.e. (Yll + Y22)/4, must  be overcome by the difference between 
unlike and like site interactions between non-identical sites. Clearly, in the eases 
we have chosen, which are representative of two type site molecules and include 
many  real molecular systems, negative M values will occur more often than not. 
Only in the relatively few eases where like sites are formally bound to each other 
or where unusual geometries pertain, may  we expect the average like-site distances 
to be as close or closer than unlike-site distanees and hence produce a positive M. 
Therefore, although quantitat ive generalizations to moleeules with more than two 
types of sites are not possible in tha t  M loses its distinct meaning, we must  con- 
clude that,  at the very weakest, M may  be of either sign for physically realizable 
molecules. This implies a definite disagreement with the precept of the co-technique 
whieh assigns a positive coefficient to the dependence of A on charge density 
difference independent of molecular structure [8]. 

The origin of this disagreement m a y  easily be traced. That  o~ should not only 
have a positive value (to make _coil0 positive), but  a sizable one at that ,  could be 
semi-empirically justified by approximating the Coulomb integral of a free sp 2 
carbon atom by  the average of the ionization potential and electron affinity. One 
then relates the Coulomb integral change presumably undergone by this a tom to 
the Aq change accompanying ionization of its p-electron through the basic co- 
technique equation [9], 

_ 1 [ i  (oo~)  + A (O~ + �89 [ I  (%~)  + A ( O ~ ) ]  -~ t2  e V  

= (~c+  - -  ~co) = co#~ - q+) = ~ # 0 .  

This approximation for the atom yielded a value of ~-~ 5 for co which was known 
to overestimate charge redistribution effects in molecular systems and more often 
than  not to cause divergences in the cycling scheme (values of ~ t appeared 
empirically to be more satisfactory). I t  was quite reasonably assumed tha t  other 
atoms bonded to the site of ionization would buffer the gross Coulomb integral 
change and hence lower the value of co. 

The buffer effect exercised by  donation of electrons to shield the charge deficient 
site must  be of a short range nature if a single value of co is to apply to hydro- 
carbon molecules generally. On this basis and to avoid introducing redundancies 
in the z-electron calculation, most of the shielding effects must  be postulated to 
arise from the ~-framework, i.e., to be z-induced ~-effects. Quite obviously, since 
molecular geometries vary so widely, it is impossible for an average of ~-induced 
~-effeets, either in the sense of donation of shielding electrons or in electron repul- 
sions to appreciably contribute to co. We must  conclude therefore, in light of the 
excellent success the co-technique has in correlation of conjugated hydrocarbon 
ionization potentials, that  the H/iekel method itself must  be capable of averaging 
mueh of the 7~-effeets upon certain molecular properties, but that  there is no 
justification in assuming any direct correspondence between inclusion of repulsion 
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t e rms  in  the  K a m i l t o n i a n  and  m-technique appl ica t ions  in the i r  absence. This 
conclusion agrees wi th  a s imilar  deduc t ion  ob ta ined  from pure ly  numer ica l  resul ts  
on ion iza t ion  po ten t ia l s  p rev ious ly  [8]. 

To follow the  consequences of  the  preceding a rguments  a b i t  fur ther ,  i t  is of  
in te res t  to  note  t h a t  the  energy changes in  the  ~- f ramework a t t e n d a n t  upon  the  
shor t  range shieldhlg of a .~-eharge deficient  site could ve ry  well be cons tan t  or 
essent ia l ly  so, in accord wi th  the  cons tant  lowering of the  free a tom co over  all 
molecules of concern, and  hence to  be incorporable  in the  ~s t e rm  in the  ion iza t ion  
energy.  The value  of c ~  found empir ica l ly  in the  ioniza t ion  correla t ion is - 9 . 8 8  eV, 
compared  to  - 7 . 2  eV for cr for free sp ~ C [10], or an  effect of - 2 . 6 8  eV. I f  we 
make  the  assumpt ion  t h a t  the  deshielding effect in the  e lect ron aff ini ty  process is 
of the  same size, c~_ ~ would be - 4 . 5 2  eV, and  the  heretofore  uncor re la ted  e lect ron 

affinities of  hyd roca rbon  molecules now are quite well f i t ted  b y  ~f = - ~0 _ 

- m ~  ~ co r See Eq.  (21) of I~ef. [8 (par t  I)] and  Tab.  3 therein,  and  Tab.  

6 here where the  deshielding effect is included.  I t  is of fur ther  in teres t  to  note  t h a t  

Table 6. Electron A//inities o/ Hydrocarbon Molecules in eV 

Molecule e9 = 1.4 Pople Experimental 
a ~ _ = -4.52 eV 

Ethylene - 2.02 - 1.81 
Benzene -1.04 -1.40 -0.54 
Butadiene -0.48 - 0.34 
Allyl RadicM +0.58 +0.24 +2.1 
Benzyl Radical +I .14 +0.69 +1.8 
Styrene - 0.20 - 0.29 
Methyl Radical 1.99 -1.03 +t.1 
Triphenylmethyl + 1.35 +1.65 + 2.1 
Biphenyl - 0.44 - 0.37 +0.41 
Naphthalene - 0.04 - 0.t4 +0.65 
Phenanthrene +0.08 -0.06 +0.69 
Anthracene +0.48 +0.64 +1.19 

now I + ,4 = --  (a:~ + cr176 + 2 co/~ ~ = 8.49 eV, cons tant  for a l l h y d r o e a r b o n  and  
subs t i tu ted  hyd roca rbon  molecules where the  theore t ica l  me thod  applies,  and  in 
excel lent  agreement  wi th  the  value of 8.47 ob ta ined  in  the  Pople  me thod  [11]. 

The foregoing discussion br ings us most  na tu ra l ly  to  an examina t ion  of the  
per formance  of the  expl ic i t  e lectron repuls ion method  under  s imilar  c i rcumstances .  
The Pople  me thod  is known to yie ld  sa t i s fac tory  correlat ions of ionizat ion poten-  
r ims for a l t e rnan t  hyd roca rbon  molecules and  is felt  to be, in  the  absence of a 
comparab le  b o d y  of  exper imenta l  results,  s imi lar ly  rel iable for e lectron affinities. 
However ,  the  me thod  as genera l ly  appl ied  invokes K o o p m a n ' s  Theorem ; when the  
energy difference is t a k e n  be tween  the two states ,  bo th  op t imized  with  respect  to  
the  S.C.F. condit ions,  the  results  are r a the r  poorer .  W e  m a y  therefore  conclude 
t h a t  this  m e t h o d  as genera l ly  appl ied  also does some in te rac t ion  averaging,  mos t  
of  which is p r o b a b l y  incorpora ted  in the  U's, the  electron-core in te rac t ion  energy,  
a t e rm  which cont r ibu tes  to  the  energy difference only in processes where the  
number  of e lectrons changes. 
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A further and perhaps more striking insight into the differences predicted by 
the explicit vs. averaged electron repulsion methods for charge density, is to be 
found upon consideration of molecules having structural branch points or tert iary 
sites. These are sites which are bound to three other conjugating sites in the mole- 
cule. Where the (9-technique, in its usual manner, predicts levelling of the charge 
density differences arising from the zeroth-order ttiickel M0's,  in the PPP  method 
greater charge density is often computed for these ter t iary sites in the carbonium 
ions than in the neutral parent molecules [2]. Analogously, less density is found at 
these sites in the carbanions than in the neutral parents. These apparently anoma- 
Ions results arise from a combination of two factors which may  be precisely 
examined for case IV, m = 3 ; extensions to both the hypothetical higher branched 
molecules and to molecules with more than two types of sites are easily visualized 
from the results of this case. In  accord with our earlier observation concerlfing 
geometric proximity of unlike versus like sites in the molecule, M is negative for 
this molecule. From Tab. i, 

2 m 7 1 2 > \ 2 ( m + l )  + I=1 ~ 72,z+2/ , 

independent of whether the peripheral groups are formally bonded or not. (So are 
the general conclusions independent of this bonding, although the quantitat ive 
results will differ.) Hence, the PPP  method will predict a greater charge disparity 
than will the Hiickel method for the perturbed neutral molecule. 

In  the carbonium ion whose peripheral groups are not bonded to each other, 
because the highest filled MO is nodal at the ter t iary site numbered as i in Tab. 1, 
the Hfickel MO's predict Aq~_ = - ] / 3  (or - i / m  for other number of branches). 
The complete closed form calculation proceeds as follows. 

Here, because only one MO is not nodal at the branch site, a single A pertains : 

A t+1 = K ~- MAqt+ - �89 pt 3 + Y,3 + 

3p~,+ = ~ + (~) & / 2  ~ ,  = 1 + & / 6  V3F~ = l ( 3 q ~  + ~),  
1 

F12 = fl~2 - i P12 Yx2, Pl~ - V~ 

I t  should be noted that  Ap is linearly related to Aq here ; hence M '  will represent 
an exact rather  than approximate cycling variable: 

~ 1  = I t '  + M '  A q ~ ,  

K '  = K - ~2~/~ = - [ -2~12 + 2y,~]I4 - ~2~/4 �9 

Noting that  all internal angles in this molecular are 120 ~ assuming benzene bond 
lengths and by  recourse as above to the summation of geometric progressions, 

ZlqO ~ = B +K'A - 1/3 + ( -0.445 eV) ( -0.856 eV -x) 
t - M ' A  -- t - ( -4.32 eV) ( -0.0856 eV -1) = --0.4685 . 

Therefore, with inclusion of the co-technique values (co = 1.4) : 

Hfickel qO+_ t.0000, o q2+ -- 0.6667 ; 

p p p  q~O+ == 1.0814, q~+ = 0.6329 ; 

r q~+ = 0.9t25, q~+ = 0.6958. 
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I t  is now apparent why the branch site exhibits excess charge density in the 
earbonium ion in the PPP  method. Not only is M (more correctly M') negative 
which enhances the zeroth-order charge density difference, bug because the 
branch site is nodal in the MO from which the ionization occurs, the zeroth-order 
density for this site is unaffected by the ionization, t]enee, since a unit charge 
exists before electron repulsion operates to increase this density, ql+ must be 
larger than one. I t  might be mentioned that this anomaly could be mitigated in 
some cases if K (or K')  were large enough to decrease the zeroth-order density 
difference which appears in the numerator of the final Aq~ expression - -  here it 
is roughly 3-times too small. Moreover, we may conclude that branch sites are not 
necessary to affect such a charge pile-up ; as long as a site is nodal or near-nodal in 
the ionization-MO and M' is negative, the same result may be obtained. For 
example, in the al].yl radical, q~+ = t.065, q~+ = 0.467. Conversely, we may 
conclude that  if the tertiary site in a molecule is not nodal in the highest filled MO 
of a neutral molecule, or if M' is not negative, or if K '  is sufficiently large, then 
~-charge build-up may not be predicted in the carbonium ion. 

b) Sd/-Consistent Bond Orders/ tom Closed Form Expressious 

The trans-butadiene molecule provides a good example for demonstration of 
the term-by-term analysis of bond order effects possible with the closed form self- 
consistency expressions developed here. The case is of particular interest in that 
intimate comparisons may easily be drawn with the corresponding results of the 
Hfickel and co-technique-type methods which are known to overestimate the 
central bond order and hence to underestimate the corresponding bond length.. 
This particular failure has been assumed symptomatic, and rightly so, of the 
inability of the averaged repulsion methods, parametrized for other observables, 
to correlate z-electronic effects on molecular structure. 

Trans-butadiene is a ease I I I  member with m = 2: 

A~ +~ 

~vj 

AApt 

= MAqt + N~AAp t , 

= -} (~1~ + ~2~) cos ~ j ,  

= (2018 - -  p2a) t - -  (~91a - -  /924)0 = Apt - ApO, 

= [ - ~ + ~ (w~ + ~ )  Ap ~ cos ~ i ,  

~ ] 1 2  = F12 d- F14 c o s  )-~j. 

Since FI~ = - �89 P14. Yl~ and Pl~ = 0, then 

1 
G1 = - -  G2 = ~]1/~/[(~]1/~) 2 @- ~ ( ~ ) 2 ] g  , 

S 
H i - -  H 2 = ~ (~)2/[(~]1/~)2 @- 4 ( ~ - ) 2 1 2  

Further, since Aq ~ = 0, we observe that z]l = -- A~ and 

Aq 1 = Ha zJ~ + H 2 A~ = H(zf~ + A2) = O. 

Hence, inductively, j t  = _ z]~ and Aq t = 0. Therefore 

Ap  t = G 1 + H 1 z] 1 -- G~ -- H a A2 = 2(G1 + H1 Z]-I) " 
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We observe then  t ha t  Ap I = 2G1, and  by summat ion  of the geometric progressions 

involving A p t  and  z{~ +1 , 

A p  ~ - -  2G1 - 2HN1Apo  ~ A P  1 - 2HN1ApO 

I - 2 H N  1 I - 2 H N  1 

Recalling tha t  pt a § pt 4 = 0 we can extract  P~a at any  stage, i.e., p~  = �89 A p  ~ .  

The value so obta ined is essentially a static self-consistent field result, i.e., the 
bond order corresponding to the fixed geometry assumed for the carbon atoms in  
butadiene.  The first two row-blocks of Tab. 7 show the results obta ined for Pl3 
and P12 and associated quant i t ies  assuming the molecule has equal bond lengths of 

Table 7. Bond  Orders and Associated Quant i t i e s /or  t rans-Butadiene ~ 

Method footnote p11~ Pl~ P~a P~a 2H2V 1 J(eV) A~(eV) 

static, }! 0.911 0.911 0.398 0.366 0.383 -5.655 
bonds equal 0.9ti 0.919 0.394 0.361 0.381 -5.715 0.48 

0.933 0.389 0.354 0.378 -5.796 
static, / a 0.937 0.940 0.342 0.280 0.373 -6.t16 0.92 
short-long alternation /~  0.962 0.337 0.274 0.369 -6.209 
dynamic o ~ 0.930 0.960 0.351 0.278 0.432 -6.240 1.05 
Hfickel, static 0.894 0.894 0.447 0.447 
Hiickel, dynamic f 0.9t8 0.922 0.395 0.387 0.116 1.082fl ~ -0.02fl ~ 

a The first three sets of results are from the closed form PPP relations, the last two are 
from the Hfickel and modified I-Iiickel methods. 

b Assuming ~ is converged after a single cycle; the second row result is obtained with the 
second cycle result for ~ .  

o Obtained by correcting P12 = P12( t - [rhfi/(rhfl) 2 + 4 5 2] A-~ ~ and recycling to obtainthe 
new (Pla - P2~). 

a Y12 ~ 7.5 eV, Y13 = 7.t eV and Y24 = 3.9 eV; t712 = -2.6 eV and/~13 = -2.1 eV. 
e Star~ing with bonds equal and assuming fl = f l ~ 1 7 6  fl~ + 0.08p)/S ~ and 

y(neighbors) = 7.30 (1 +1.40(0.09) (p - 2/3)), the latter by assumption of reciprocal dependence 
of p upon r and fitting parameters to benzene and ethylene distances. While these are some- 
what cruder than currently prescribed variation methods [1, 6, 12], they provide the desired 
linear p-dependence. Note as well, Y24 is assumed constant in the dynamical calculations since 
r2r is essentially independent of the degree of bond alternation. 

Assuming the same dependence of fl upon p as in footnote e. 

benzene length (fi = - 2.39 eV) and also assuming the te rminal  bonds are shorter 

and the central  bond longer so as to correspond to/~12 = - 2.6 and/~3 = - 2.1 eV. 
The results obta ined employing equal bond  lengths and  short-long a l te rna t ion  

in  the stat ic case show significant differences. We observe tha t  a central  bond  order 
of 0.274 is obtained when a l te rna t ion  is assumed compared to 0.354 when all bonds 
are held at the benzene bond length. The former is roughly 40% smaller t h a n  the 
zeroth-order I-I/ickel result  while the la t ter  shows only about  half  this d imuni t ion.  

I n  contrast  to these stat ic results, one m a y  obta in  a set of t ru ly  self-consistent 
results, wi thin  the l imita t ions  of the method,  by  obta in ing dependences of the 
resonance and  repulsion integrals upo n in ternuclear  distance and thence upon  
bond orders through semi-empirical relations among these quanti t ies.  The l inear 
semi-empirical relations employed are detailed in  the footnotes to Tab. 7 and were 
obta ined  by  Taylor  expansions about  first-order static results previously obtained.  
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What  this dynamical procedure does operationally is merely to change the linear 

parametric dependence of P12 upon ~ and vice versa, and ofApl  a upon zJ and ~ .  
The most important differences from the s~atie results are detectable upon exami- 
nation of 2 H N  1 and the incomplete alternation predicted by the Hiickel zeroth- 
order results themselves. Note the closed form expressions are not altered between 
the static and dynamic methods. 

We find that  the dynamic self-consistent procedure starting at the equal bond 
length configuration can produce p~ and p~ values which are in good agreement 
with previous electron repulsion included calculations on butadiene [3, 13] and 
very close to the alternant short-long static system previously examined. Further, 
and most important, these results are essentially independent of the starting 
configurations ; only in the event of such a distorted initial configuration so as to 
invalidate the Taylor expansions will this independence not apply. The final 
dynamical result is partly due to the first cycle correction which already recognizes 
considerable alternation through dimunition of U,~ and a simultaneous increase of 
~-, and partly to the comparatively large self-consistency factor 2 H N  r The 

latter, in turn is lm:ge because the linear coefficient relating A to AAp,  which is 
(Yla + V2r is enhanced by the fl and Via dependences upon AzJp; i.e., N 1 which is 
2.8 eV in the static systems is 3.29 eV when the/~ and Y variational dependences 
are included. 

By much the same token, the dynamical Htiekel results can not produce the 

same degree of alternation, principally because of the weak proportionality of zl 
upon AA l) arising from the lack of repulsion terms in the proportionality constant. 
The entire dependence falls upon the/~-upon-p linear factor, which is the same 
incidentally as that  employed in the previous calculations but which constitutes 
only of the order of 10--20% of the total value of N i in those calculations*. The 
Htickel value for 2 t I N  1 is seen corxsequently to be only about �89 the size of the 
corresponding factors in the electron repulsion cases. The difference between the 

methods is further emphasized by examination of the A- 1 values, which are in 
essence orbital energy differences between the external and internal sites in the 

butadiene molecule. When electron repulsion effects are included zJ- t is about 
I eV, contrasted to about 0.05 eV when these terms are neglected or averaged for 
~he individual sites. As a final comparison, it is of interest to compute the bond 
lengths corresponding to the converged bond orders obtained by  the various 
methods using the reciprocal relationship employed in the dynamical calculations, 
t / r  = 0.65576 + 0.0916~p. The results, all in ~ngstroms, are for the P P P  method, 
r12--- t.34a, rla = 1.46s; from the self-consistent tIiiekel method, r12 = 1.351 and 
r~3 = 1.446. The va[ue of r~3 from the zeroth-order results in ~.43 a. 

I t  is quite apparent from scrutiny of this example why the H/ickel method as 
applied cannot produce the same effects upon cycling as can the repulsion-included 
methods. There is :no direct means within the former to recognize the geometric 
differenees which exist among molecules with regards to such features as terminal 
sites, multiplicity of bonding to any given site, etc. Such features can obviously be 

~r MULLIKEN and eo-workers m~ny years ago computed somewhat greater alternation by 
this method but only upon assumption of considerably steeper dependence (roughly t~4ee) of 
fl upon r and hence upon zI/~ [14]. 
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of varying importance depending upon the molecular property examined. Differ- 
ences in success of parametrization must also be expected in the simple theory 
depending upon the molecular property. 

I t  does not seem unreasonable then to expect that  properties which are directly 
dependent upon the cycling variables, such as charge densities, bond orders and 
site-site polarizations would be more sensitive to these geometric factors than less 
direct quantities such as ionization potentials, resonance energies and spectral 
transition energies. The latter are considered indirect only in the sense that they 
are properties of the entire molecule in more than one state rather than of individ- 
ual sites in a given state. By the same token, it is not surprising that we are 
better able to parametrize the Hfickel method for energy differences than for 
electron distributions. Conversely, we must expect that  correct predictions for the 
latter might require either somewhat better detailed methods of averaging, e.g. 
geometric dependence for o~, or parametrization at a different stage in the calcula- 
tions. Fixing [~ and its relationship to intersite distances for bond order computa- 
tions alone, without regard to the different relationships which may hold for 
correlation of other observables is an example of the latter procedure. 

Finally, we may conclude, accepting the electron repulsion included methods 
as more precisely representative of the bond order-bond length conditions which 
exist in alternaDs hydrocarbons, that  the charge densities computed by the Htickel 
method are less reliable than those forthcoming from the repulsion included meth- 
ods, and, that  when a substantial difference exists between the results of the 
different methods, those of the latter be more readily but by no means completely 
authoritatively accepted. 

c) Concurrent Charge Density and Bond Order E//ects in Closed Form 

As a final illustrative example of the possible range of utility for the closed 
form expressions developed here, we may examine the quantum chemical MO 
representation of a recently synthesized member of the radialene family, tri- 
methyleneeyclopropane [15]. This molecule is of ease I I I ,  with m = 3. We recognize 
that this is not an alternant hydrocarbon, and, since the obvious strain which 
exists in the ring and as well the hybridization of these sites is not fully accounted 
for, snggest that  the results be taken with the proper degree of scepticism that 
such simplifications merit. 

Assuming all bond lengths equal and i.40 ~x (fl12 = fila = -  2.39 eV), then 
dq ~ = 0.t249, Ap ~ = (p~ a - p~ ~ 0.7695, p0 = 0.8320 and p~ 4 = - 0.0624. With 
Y24 computed as 3.76 eV from the unit point, charge approximation [2] and Yla = 

- 4.90 �9 2/i.932 - 5.07 eV, we find M = - l . i  2 eV. The first order results are 
zJq = 0.0553, Lip -- 0.6912, P12 = 0.8677, P14 = - 0.0593 andthe rapidly convergent 
closed form expressions yield z]q = 0.0561 and Lip = 0.685. An M'  of ~ - 0.6 is 
found to reproduce these values, with neglect of sizable zJ2p = (P13 - P24 - P~ + 

-~ P~4), again because of phase averaging compensations over the 3-j's. 

These results indicate a preference for charge to concentrate slightly in the 
terminal atoms, i.e. q2 = 1.028 and q~ = 0.972. The molecule should also exhibit 
distinct short and long bonds respectively in the branches and in the ring (p~ = 
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= 0.868 and Pi3 = 0.342)*, although no excessive trust  should be put  in the quanti- 
tat ive results since we here have only obtained the static results corresponding to 
initial assumption of equivalent bond lengths�9 I t  appears tha t  the dynamic method 
would result in a further decrease of the charge density difference and an increase 
in the degree of short-long bond alternation. The concentration of charge, it should 
further be noted, is determined mainly by  the non-alternant nature of the molecule 
(viz., .d qo), with a distinct amelioration due to the electron repulsion effects exercis- 
ed in terms of a decrease in the G-values, and also, less importantly,  in a negative 
M. Again we encounter M as negative; in this case, however, the self-consistency 
procedure is seen to parallel that  which would be obtained in the a-technique 
which, as we have seen, apparently always works to smooth charge distribution 
irregularities. 

Perhaps the most important  additional point which may  be gleaned from 
study of this example is in illustration of the apparent general efficacy of approxi- 
mating the coefficient of particular Ap in the same manner as an effective M (M') 
could be apwoximated  for Aq. This coefficient could then be utilized in develop- 
ment  of closed form relations for Ap. 

From Eq. (41), in analogy to the development in Eqs. (42--46), 

[ 27alL \ m-i 
= Constant +  cos l y e )  -- (4m)-1 + 

�9 I = 1  

AP~,~I+~ cos - -  cos /o~  (48) 
/Yb 

Upon recognition of the partial phase cancellation over i for the zig term and over 
land i for the separated bond order terms, we obtain: 

(x) ~ r Adp:, 2L+2 = P~, uL+~ -- Constant = KBt, l(l BLN') . 

Here, in straightforward analogy to Eq. (47), BL is -- m -1 ~ cos ~ (2~iLlm)/5~ 
and N '  is the AApt 2L+~eoefficient obtained by  averaging so as to produce the 
same result for (~) AzJp2~+ 2 as was obtained in Eq. (48) which is exact, i.e., 

N '  = /1A~(~)~/~,~L+2 (exact)/BL'AAp~L+~ (exact). 

In  the present example, there is only a single bond order difference to consider 
(i.e. Pla - P24). ttence, N' will have only to incorporate the Aq term. I t  is of interest 
to note then tha t  while the exact N = ()'ia + 724)/2 is 5.53 eV, 3/' is 4.8 eV and 
zlp(,~) (exact) is 0.684t, while zlp(~) obtained using 2V' is 0.6840. As was reported 
previously, a value of ~1'~.-~ - 0.6 eV could reproduce the Aq values obtained by  
conventional cycling with M ~ - 1.t oV and upon retention of the zip-term. 

d) Extensions o/the Formalism 
While major emphasis has been placed here on the computation and compari- 

son of charge densities and bond orders, the relations exist in Eqs. ( l i) ,  (29) and 

* The bond lengblhs corresponding to these bond orders are by the reciprocal r-p relation- 
ship previously employed, ri~ = 1.36 _~ and ria = 1.46 ~. ConventionMly cycled PPP method 
results are 1.35 and t..46 ~ respectively [16]. 
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(30) to  compute  the  orb i ta l  energies for the  special  molecular  cases, and  th rough  
the  self-consistent  wavefunct ions  themselves  other  expec ta t ion  values.  F u r t h e r  
s implif icat ions of the  closed form expressions and  extensions to  o ther  t h a n  the  
special  molecular  cases for some of  these quant i t ies  are p resen t ly  being sought.  
These efforts are d i rec ted  along the  lines followed for ioniza t ion  po ten t ia l s  and  
e lect ron affinities in  the  ~o-technique analys is  p rev ious ly  described.  
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