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Analysis of the similarities and differences among the Hiickel and Pariser-Parr-Pople-type
methods is extended mainly through development for special molecular cases of closed form
expressions for the self-consistent wavefunctions. By means of these expressions the various
contributions of terms in the Hamiltonian to charge densities, bond orders and other related
quantities may be compared term-by-term among the methods. Results on several direct
observables, e.g. ionization potentials, electron affinities, bond lengths are similarly dissected.
Simplified procedures for generation of the self-consistent charge densities and bond orders
from their zeroth-order counterparts in the PPP method are detailed.

Fiir Molekiile spezieller Symmetrie werden geschlossene Ausdriicke fir ‘self-consistent’-
Wellenfunktionen entwickelt. Aus ihnen lassen sich einfache explizite Reihenentwicklungen
fiir GroBen wie Ladungsdichte, Bindungsordnung, Ionisierungsenergie usw. erhalten. Die Ver-
wandtschaft verschiedener MO-Methoden (HMO, w-HMO, PPP) kann so eingehend analysiert
werden.

L analyse des similitudes et des différences entre les méthodes de Hiickel et celles du type
Pariser-Parr-Pople est élargie essentielloment par I'établissement d’expressions implicites pour
les fonctions d’onde self-consistantes dans des cas moléeulaires particuliers. A 'aide de ces
expressions les contributions des différents termes de I’'Hamiltonien aux densités de charges,
indices de liaison et autres quantités qui leurs sont liées, peuvent étre comparées terme & terme
entre les méthodes. Les résultats concernant différentes observables directes comme les
potentiels d’ionisation, les affinités électroniques et les longueurs de liaison sont analysés de
I2 méme maniére. Des procédés simplifiés, qui permettent d’engendrer dans la méthode Pariser-
Parr-Pople les densités de charge et les indices de liaison self-consistants & partir des quantités
correspondantes & 'ordre zéro, sont exposés.

1. Infroduetion

Inclusion of electron repulsion terms in the Hamiltonian used to compute
n-electron wavefunctions for large hydrocarbon molecules has removed important
conceptual deficiencies of earlier semi-empirical MO methods. This was the major
intention of Pariser and Parr [I] and Porry [2] who were originally responsible
for development of approximations for the repulsion terms. In fact, a balance was
sought between incorporation of the most important electron-electron interactions
and maintenance of the relative simplicity of wavefunction calculations charac-
teristic of the simpler MO methods. This desire for simplicity was fulfilled, at
least for the zeroth-order wavefunctions.

However, since their methods are based upon self-consistent orbital equations
[3], the single determinant functions should be made internally self-consistent. It

* Research performed under the auspices of the U.8. Atomic Energy Commission.
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is at this point that the complexity of the caloulations, in the sense of the number
of arithmetic manipulations necessary, may subsbantially increase relative to
those of simple (Hiickel) theory, with which, it seems, improved large molecule-
theories are inevitably compared.

It is the purpose of this paper to extend the analysis of differences between the
explicit versus averaged electron repulsion Hamiltonian methods, with particular
emphasis on how charge distributions are determined and what effects acerue upon
imposition of self-consistency procedures. Special molecular cages may be chosen
where the S.C.F. procedures typically affect the wavefunctions derived, but where
the usual iterative techniques employed may be replaced through analytic summa-
tion methods by closed form expressions which yield good approximations to the
results obtainable by cycling. From these and the zeroth-order functions for these
molecules one may seek a more detailed understanding of how various terms in the
Hamiltonjan enter the wavefunction computation and ultimately determine
various theoretically predicted properties of the molecular state. Thess results
may then be compared, term-by-term, with the Hiickel results rather than only as
composites and at the end of the calculation*. Also included where pertinent are
the results of an improved version of Hiickel theory, i.e. the m-technique, wherein
self-consistency procedures are employed and which has been the subject of
previous closed form analysis [8].

2. Theory
a) General Features

In the LCAO MO method, the i-th molecular orbital is expressed in terms of
the atomic orbitals,

Yi= 2 CiuPu > (1)
"

where the equations which determine the u-th AO coefficients are, under the
variational principle,
z F!w ¢y, = K z Sm, Ciy - (2)

Neglecting differential overlap,
z F,uv Civ = EZ Cip - (3)

In the Pariser-Parr and Pople (PPP) formulations where, in addition to the
overlap approximation and the assumption of a constant undeformable o-core,
all electron interaction integrals other than

Y= | | T 922 (1) (2) | ] doy iy
are neglected, the pertinent matrix elements become:

FHM:UM+%QNVM#+ Z(QV‘“DVW’ 4)
VEU

* Several useful reviews of other efforts to explore relations among Hiickel theory and a

succession of improved theories originating with the Pariser-Parr-Pople methods have recently

appeared [4 — 7]. While most of the work cited has been primarily concerned with problems

of parameterization in the various methods, some complimentary to that reported here is

directed to analysis of the comparative mechanics and toward possible simplifications of the
methods.
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Iﬂm’ = ﬁ,ml - % Puv Vv (5)

Qo = 2, i Cif (6)
i

Pur = z Mg Ciy Cip - (7)
i

The zeroth-order elements are computed from the semi-empirical values
derived for U,, the electron-core interaction energy, f, the resonance integral
which is non-zero only for neighboring, and generally formally ¢-bonded sites, and
v, and from the ¢’s and p’s obtained from the Hiickel vectors for the pertinent
molecule. From these elements, the matrix of Egs. (3) are solved yielding the first
order set of AO coefficients. The latter, in combination with the integral values
already used allow computation of a new set of interaction elements, which in turn
yield a new set of coefficients. The cycling procedure is confinued until the AO
coefficients no longer change.

b) Applications in Special Moleculor Cases

In totally symmetric molecules, i.e. those with all AO sites equivalent and with
rotational symmetry of the same order as the number of sites, the AO coefficients
in each MO are symmetry determined and, hence, by Eqs. (6) and (7), so are the
¢’s and p’s. The self-consistency procedure is therefore convergent in a single cycle
and, importantly, by virtue of symmetry demands, the wave function coefficients
are identical with those obtained by the Hiickel method. In the more interesting
cases for our purposes, where all AO sites are not the same, differences in the
coefficients will be noted. These differences in turn result in charge density and
bond order differences and, hence, in differences in the first- and higher-order
energies and associated quantities computed. When we restrict ourselves to
molecular cases where two different types of AO sites are present these differences
may be followed analytically in much the same manner as they were under the
w-technique analysis. Following Ref. [8], we again distinguish between geometric
and constitutional AQ-site differences and, because of present uncertainties in
heteroatom integrals, mainly restrict ourselves to consideration of cases of the
former type.

Tor these cases, the matrix of Egs. (3) of general order equal to the number of
7-A0 in the molecule may be reduced by use of symmetry orbital representations
to a number of matrices of lower order, each with two blocks centered on the
matrix diagonal, representing like-atom interactions, and with off-diagonal
blocks for unlike-atom interactions. If advantage is taken of the full symmetry of
the like-atom arrangements, matrices of order 2 result* from transformation of
Eqgs. (3) to

Fi4a Cia+ Fiap Cip=E; Cia.- (8)
The F-terms arise from the Hamiltonian operating on the symmetry orbitals,
¥, where y4 and yp are respectively the orbitals for the sites of types A and B,

* Having only two types of sites iy a necessary but not a sufficient condition for this reduc-
tion to order 2 matrices. Apparently, at least for planar molecules, which are of principal
concern here, unless the in-plane rotational symmetry is of the same order as the number of
individual sites of the more numerous type, matrices of higher order may be unavoidable.

Cf. Tab. 1, case IT; with the exception of the sub-cases shown which are reducible to order 2,
no other molecules meeting the first but not the second condition will be considered.
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wi=Ciagia+ Cipyin=Cia 2 o+ Ciz 2 bk, (9)
j=alid k=all B
and
j%& Hyjadv = Fiaa, j%i{ Hyipdv = FiaB- (10)
From Egs. (8) one may readily show that
Ei—z = E:l:t zA4 = 2 Az - ]/A2 + 4=sz3) (11)
. - = 1
Ciia = Ouip Fian| B, Crip = [BL | (B + F34B)1? (12)

where A; = Figp — Fiaa, and the + has its usual bonding, antibonding orbital
distinetion. Since

o s =Ty (A VB AT -4 T 4, )
HETVEAT G FLy) (A VA AT, 4Ty A AT,

and cfb = (4 a4y, for sites of type 4 and oﬁ = C;p by, for sites of type B, then the
charge density difference components of Eq. (6) may be obtained:
(“121 + btzlc) 4, 0
(Cﬁc)z - (05)2 =3+ Vzgqg,—z + (b — “?j) . (14)

The sites § and & may be arbitrarily chosen since all sites of a given type will by
definition have the same charge density.
In a completely analogous manner the bond order components may be derived.:

i ol = i biw Fiag| ]/Az—}— 4F% 5, (15)
of o = 2aij ax Fiag| (i = YA+ 4 Flp) VA+4FYp) (16)
C 0170 - bw bik {/l- - [2 gf-zAB Al * VA2+ 4 zAg) (VA2+ 4: iA; ]} ' (17)

Eq. (14) reduces to —aj; if the symmetry orbital function over type B is nodal
ab the site k, and to b3 if the funection over type 4 is nodal at site j. Similar straight-
forward results are obtained for the bond order components in the event of such
nodalities.

¢) Linearization of the Charge Density and Bond Order Relations

We will now recognize conditions of apparently wide generality which allow
simplification of relations 14 — 17 for the special molecular cases of interest.

In the event that | A; | < | 2 #4p |, the square root terms of these equations
may be expanded and truncated:

(62 — (c5)? = —{ b2 — af) + éj-fiuz} , (18)
cholfl =+ 3 @iy big {1 — (A28 F2 )}, (19)
o cff = o {1 T (4if2 Fian)} (20)
of off = % by b {1 = (4:/2 Fian)} - (21)

If the changes in A; and &;4p resulting from cycling are of the same order of
magnitude, or if those in the former are greater than in the latter, which, as we
shall see, holds generally, then in terms of the small-difference equation

X X
=22 0d) + 5

. 17}
0 X (4, Fias) I, 8 Fian

M(F 14B), (22)
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we find Egs. (18—21) are, to very good approximations, linear difference equa-
tions in the single variable, 4;. For example, from Eq. (18),

Bys  (oA)2] = “?ﬁb?k{ ! Vo A s A %
6[(6116) (czy) ] = =* 7{"“ 29@48 5(A¢) 2 9.12‘43 6(?@AB)} == i 4{9_“1: 5(A )

The difference equation corresponding to Hgq. (19), on the other hand, while
linear in 6(4;) has a very small coefficient, i.e. —4;/8 Z%5, and hence cfj ¢f is
essentially constant upon cycling under these conditions.

In the event A; and F;4p are of the same order of magnitude but where

=B + A;, with 78 constant with cycling, and ]A |« |2 Fiap |, then again
expandmg and truncating Egs. (14—17) after the first-power term in A;,
nif
(B — (cf2 =% {(b%k — afy) = (af; + bh) [Xi,z + X’A“ : (23)
f@ i i
choll = + ay bur e {1 ~“—‘3Ai}, (24)
o off = 245 aip F o (25)
ik i Wik <" iAB X A ﬁX”Z X3/?: ’

2 73 iAB 277 iAB
05 Czﬁ = bys bix {1 - X, + ,7:/3 X;’Z - X%/z Ai } (26)
Here, X; = [(:8)? 4- 4 #2,5), and 7; symbolizes intra-type integrals, or sums or
differences of such integrals arising from %;pp — F;44. It should, of course, also
be recognized that if 74 is zero, Egs. (23—26) reduce to Egs. (18—21), and, more-
over, that the former are capable of directly producing the zeroth-order Hiickel

charge density and bond order components, where # %z = (1;8)° and 4? = 0 are
the Hiickel matrix elements. Again, if the effects of cycling are small and if the

changes in A; are not orders of magnitude smaller than 45, Eqs. (23—26) are

also single variable equations and are linear in the variable A;. As before cfi of
will be more weakly dependent upon cycling changes in 4; than the other coeffi-

cient terms, here mainly because its 4; coefficient is relatively much smaller. E.g.
if 9f = Fiap, which constitutes a most unusual and unfavorable case, the

coefficient of A; in Eq. (24) will be roughly an order of magnitude smaller than in
Egs. (23), (25) and (26).

d) Analytic Linear Interrelations among Oharge Density, Bond Order and Components
of Energy

Upon consideration of the matrix elements, A; and & 45, several important
generalizations concerning their nature may be drawn. The former, Ay, is the
difference between interaction elements #;z5 and F;44, each of which is the
combination of ¥,, and F,, [Eqs. (4) and (5)] arising from the symmetry orbitals
over atoms of type A or B, where all 4 and » are either of type 4 or B. On the
other hand, ;45 is the cross-term expressing the interactions between atoms of
different types in the different symmetry orbitals; hence, this term will be a com-
bination of F,, terms only, where u and » must be 4 and B. These generalizations
may be expressed symbolically as follows,
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Ay = Fpp— Fya+ 2 tipe Fep — Z Tiaa’ Faa, (27)
BB;Z%/ A;EA’
Fiap = 2 tiaB Fap. (28)
iB

Note, since the symmetry orbitals are normalized, the coefficients of F,44 and
Fgp are unity. From Eqs. (4) and (5), remembering that all sites of the same type
have the same charge density and that the 7-coefficients are symmetry orbital
determined and therefore unchanged upon cycling, we may write,

A=k -+ mpqp — maga + ¥ Tins’ (BB’ — % P5B VBB —

— S viaa (Baa — 5 paa’yaqa) (29)
= (mif) + K + Mg — q4) + 2. (T8 B8’ — Tina’ pas’)
Fiap = > Tiap (Bap — 5 Panyap) = Ki + > Tiap pap - (30)

The second equality in Eq. (29) is obtained from the first by resolving mpqp — maq4
in terms of M(gs — q4) + k' (maga + negs) where ny and np are the number of
sites of the specified types: the latter term is of course constant and known since
1494 -+ npgp is equal to the total number of z-electrons in the molecule.

Recalling from Eqs. (19) and (24) that ¢f ¢Z is higher-order-dependent to
cycling changes than the other coefficient product terms, we may assume within
our first-order treatment that & ;45 is constant. Therefore, our earlier assumption
of the order of magnitude difference under cycling changes between A; and %45
is shown justified, and the following general conclusions may be drawn. The
interaction parameters, A4;, are approximate linear functions, upon cycling, of Aq
{i.e., g — g4) and of the bond orders, pss-and ppp.. The latter are, in turn,
approximate linear functions of A; through the near- linear functionality upon 4,
of their respective components, (¢5)2 — (¢f)?, cff ¢ and c& ¢f;. Hence, the following
interrelation scheme pertains for the second, the more general, condition outlined
above, under the tacit assumption that the expansion-truncation conditions are
met in passing from the zeroth- to the first-order coefficient set:

occ.

Agh=Ag"+ 2 3 oms { + (af + V}) Fiyp/XT% A, (31)

oce.

Di(BB') — ph(AA") = Aplym + 2 2 i { & (bij bin + aa aim) FLap|XT AL, (32)
7
A =B + K + MAgt ‘I"A%(TiBB' Ppp — Tiaa pliar) - (33)

In these equations, the f-exponents indicate the cycle number, n; signifies the
number of electrons in orbital ¢, and & 45 is constant after the first cycle if mif is
zero or after the second cycle if #;5 is non-zero. Natural pairs (or upon occasion
when the number of sites of types 4 and B are not the same in the molecule,
multiplets) of bond orders exist which allow direct simplification of Eqs. (32) and
thereby indirect simplification of Egs. (33). B.g. for molecules where only constitu.-
tional differences exist between site types which are present in equal number,
complete pairing may be made where not only are all A9° equal to zero, but where
it im is equal to by by and ph(BB') + pl,(A4’) is constant upon cycling. These
simplifications may be construed in the following representation of Eqs. (31—33):
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oce.

Aple = ApY+ 3 Yup 48, (34)

pairs __

A=K+ 3 Ty Aply, - (35)
ik

Here Ag isincluded as a Ap-term, i.e. pj; — py; for all, the subscripts j and % are
given with the natural pairing (with bond order between sites 7 and m} implicit. The

Aj-coefficients of Eqs. (31) and (32) are symbolized as
Yise,
Ki= K+ nif + 2 (Tox — Tum) (P + pim)/2,
Tt = (To + Tum)f2 -
For the cases where more than a constitutional difference exists, or where there
are an unequal number of sites, the simplifications will be somewhat different, but
the forms of Eqs. (34) and (35) will still pertain. Examination of specific cases,

below, will make the choice of pairings and the nature of the simplified coefficients
more obvious.

3. Change Densities and Bond Orders from Self-Consistent Wavefunctions by
Closed-Form Approximation

) Charge Densities: Their Computation and Some Implications to Direct Observables

If Egs. (34) and (35) are cycled against each other conventionally, the following
general relationships are obtained after ¢-cycles:

Apy = Apfy + >£ Vi K + Tige A% +
+ ; Yiik {72]6 Tisx [,iz Yie (K + Tun APJ)} + - + (36)
+ ; Yiik {jZ} Tijx [; Yije . .. j’Zk Tiji (; Yige (Ki + T ADY)) . .1},
Aw=&+%ﬂwm. (37)
7

Tt is quickly apparent that the complex, repeated sums of Eq. (36) are not
amenable to direct general solution if more than one Ap-term must be considered.
We may, however, take advantage of a corollary of the pair simplification proce-
dure for Ap-terms which allows further simplifications for cycling. The important
factors of high symmetry for the molecules of concern and wavefunction nodalities,
which provided simpler expressions for Ap than for the individual p-terms, also
provide, upon proper combination, functions of Ap;; which depend strongly on
cycling only for certain but not all combinations of j and %. Tab. 1—4 contain the
cycling equation coefficients for a variety of molecules, both real and hypothetical,
which are typical of the cases of present interest and illustrate the ways these com-
binations may be made.

Tab. 1 displays the constant and change density difference dependence of 4;,

terms which are independent of the orbital, ¢. In terms of Eq. (35), M is Tipe =
= (T + T11)/2. One may readily show in general that
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u=B

M = { ”A[ D e — Vi) — % 7/22} —nB LEA()}% — Y1) + %VHH/(”A -+ np), (38)
K=

(Y22 — y11) { 1—{nagy + ”392)/2 (na + "B)]} +
+ {1 — [(nag; + nBQz)/(nAu+ wB)]} 2 (Viu — Vau) - (39)

p=al
sites

In Tab. 2 are the constant intra-site energy terms #;f, and the Ap-terms upon

which the A; depend and which are orbital level dependent. The latter have been
grouped to conform to Eq. (35), and their dependencies as expressed in Eq. (34)
are displayed in Tab. 3. In Tab. 4, the inter-site (4 B) interaction energy and bond
order relations are given. In all cases where possible, the symmetry orbital repre-
sentations of the starting wavefunctions were constructed in their imaginary
forms, yielding the results, all in real forms, shown in these tables.

Tt is apparent that in all cases examined here, and seemingly general for all
molecules of such high symmetry, the > 7'-p terms of Eq. (33) are resolvable into
Ap and pair- (or multiplet-) sum-p terms, where the latter are zero, and where all
remaining p-terms which are not combinable are found to behave as Aq for the
purpose of cycling {(cf. the molecules of type II). Moreover, the Ap terms are them-

selves simple functions of A;, and because of the wavefunction nodalities which
determine their coefficients, these Ap terms are strongly out of phase with each other.
This latter point which is essential to our ultimate ability to achieve closed forms
for cycling may be more specifically illustrated taking the molecules of type I as
examples.

For these rings where only a constitutional difference exists between the atoms
of type 4 and B, the various Ap,, a2 have common dependence upon the sum of
quotients, A;/%;, but differ in phase by the factors cos (27iljm) applied to each
term in the sum. Examination of the sums for the neutral molecules is illuminating :

m —_
Agt — mL S At
i=1

= Constant + Mm= Agt 5 (F;) —

(3

m—1 2mil
— (4m)7? El (7/2,2l+2 + V1,2l+1)APt2,zl+2 ; <COS Z /5"@) (40)
m /! _ ;
Apfhes =™ 3 A oo™ 71
A “ m
o At 2mil |
= Constant + Mm= Ag? > cosT/,/'i —
?
m—1 27il 2l
- (4M)‘1FZI (ye,2002 + Yu,2041) AP, 9112 E <COS Z: cos Z /ﬁ%> - (41)
=, v

Here, /g has been separated from the Ap-terms for clarity; it obviously has the
same form with L = 0, although not an obviously related coefficient. However,
upon examination of Tab. 1 and 2, with insertion of numerical values for the
contributing 4’s, we conclude that | M [ > ]i‘ (y2, 2142 + 1, 2141) | generally for
any ! and m, and further, directing our attention to the Ag-equation, that
[ M > (Fo)1| is an order of magnitude greater than | 471 (ye, 2t42 + 71, 2141)°
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> cos [Z; |- This implies that the major dependence of Ag upon cycling is

on Ag 1tse1f, with only secondary mixing of the various bond-order difference
terms.
Therefore, to a fair approximation,

Agttt = Constant + {Mm=1 3 (F;)1} Ag* . (42)
More specifically,
A 1 % 7t
00 =N -1
Aq T | cos — B (43)

where A is the Hiickel Coulomb integral difference, 6y — ox.

1 1 K+ MA¢ K+ MAg¢ % .

g = 3 St - =B S () (44)

for all ¢, and &; is unchanged upon iteration after cycle 1 (vide supra). We may

obtain the next higher order to improve our approximation without changing the

form of Eq. (44) by recognizing that the Ap’s will be subject to variations upon

cycling which are on the same order or smaller than those in Ag. Hence, an effective

M (M') may be defined which incorporates the bond order contributions for the

first cycle as a good approximation to the bond order contributions to all following

cycles. 1.e.,

K+ MAP «

m 57: (Fo)™ = m 7

— (4m)~t lz v, abta + Y1, 212) D3, 5142 2(008 2;”1

) |Fi. (45)

Symbolizing m~ > (%) as 4, it is immediately apparent that Ag is a geometric
progression with initial (Hiickel) parameter residues,

Ager = 0[5 aary] o (a3 g, (46)
i=
For | AM' | < 1, the converged value for Aq is
Ag™ = KA[(1 — AM') . (47)
A, is of course (Zﬁm)*ll 2 1 eos—l%’ . In a similar manner self-consistent bond

order relations may be generated (vide infra).

Tab. 5 displays some test results for the ring, m = 5, with A, and K both chosen
as 0.1 eV. These and the other parameter values shown in the Table conform fairly
closely to the PoPLE values for hydrocarbons [2] and may be thought of as being
representative of a ten-membered planar hydrocarbon ring with alternative atoms
substituted by some weak purely inductive groups. The Hiickel-w-technique
results are included for comparison. These results directly indicate several impor-
tant procedural points and as well suggest some possible generalizations concerning
the PPP method and contrasts with methods where averaged repulsions are
employed.

The electron interactions responsible for the negative value of M are instru-
mental in increasing the charge disparity over that predicted by the zeroth-order
Hiickel Hamiltonian, i.e. —0.04762 vs. —0.04161. The value of Ag continues to
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increase upon approach to the self consistent orbitals, with the 4¢> roughly 409,
greater than the first-order result.

Completely ignoring the effects of the bond order terms one obtains results
which noticeably underestimate the strength of the repulsions, although the
correct qualitative behavior is predicted. By increasing the value of I by about
10%,, as prescribed above for M’, the first- and subsequent higher-order results
are reproduced essentially quantitatively. While it does not seem possible to
generalize about the relative size of M -corrections, it does seem likely that such
corrections will be possible based upon the first order results and that they gener-
ally will be smaller than the original M itself due to phase considerations.

Table 5. Charge Density Differences for Molecular Case I,
m = 5, with 44 = 0.1 eV

Aqt

Cycle No. Eq. 384 Eq. 42 (M = -3.9p (M = —4.3,) Hiickel-w®
0 ~0.04161 ~0.04161 —0.04161 ~0.04161

1 —0.04762 —0.04459 ~0.04762 +0.01032

2 ~0.05211 ~0.04656 ~0.05205 ~0.05449

3 ~0.05552 —0.04787 ~0.05531

4 ~0.05815% —0.04874 ~0.05771

o ~0.0665¢ ~0.0505¢ ~0.0644 ~0.0185¢

= All terms; essentially identical with results obtainable by conventional cycling of the
secular equations.

P M = (it Vaa)ld = 2y00 + 2055 — 24y + 2p45 — 46 = 5.26 — 14.60 + 10,40 — 9.20 +

+7.80 - 3.5ineV.
m i |
° AT = [y — wfPdgt; Agt = (2mp) L Ae S Lcos 1 T o = 4 3.0V,
i=1] m

¢ Average from geometric extrapolations using points 1, 2 and 3 and points 2, 3, 4. The
difference between results from these two sets is 0.0004.

¢ From Eq. 45.

! Back-extrapolation of divergent results, cf., Ref. [8], part II, Eq. 9.

On the other hand, the w-technique, wherein electron repulsions are suppos-
edly averaged, predicts a decrease of the original charge disparity upon attainment
of self-consistent orbitals. This is generally the result of this method and arises
from the positive value for —wf?, contrasted to the negative value of M [cf.,
footnote ¢ of Tab. 5 and, in contrast, Eq. (42)]. The fact that conventional cycling
produces divergence is a mechanical result ; the 4¢3 e and A% e Values reported
(the latter is 0.0445 eV) correspond to self-consistent orbitals for this system and
hence are appropriate for our comparisons.

It is apparent from examination of Eq. (38) which contains the general ex-
pression for M for the two-site type systems, as well as of footnote b of Tab. 5,
that M will be negative as long as the sum of repulsion terms between unlike sites
is greater than the sum of such terms between like sites. A negative value of M as
we have just seen will result in an increase rather than a dimunition in Agq, neclect-
ing the relatively smaller effects of the Ap terms. The important questions which
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are posed therefore are, under what circumstances will M be negative, and how
for the cases where it is negative can the w-technique which operates with what is
essentially & positive M be reconciled.

It is quite clear that M will be negative as long as unlike sites are on the
average geometrically closer to each other than are like sites in the pertinent
molecules. This requirement must be somewhat strengthened in that the self-
repulsion term, i.e. (y; + ys)/4, must be overcome by the difference between
unlike and like site interactions between non-identical sites. Clearly, in the cases
we have chosen, which are representative of two type site molecules and include
many real molecular systems, negative M values will oceur more often than not.
Only in the relatively few cases where like sites are formally bound to each other
or where unusual geometries pertain, may we expect the average like-site distances
to be as close or closer than unlike-site distances and hence produce a positive M.
Therefore, although quantitative generalizations to molecules with more than two
types of sites are not possible in that M loses its distinct meaning, we must con-
clude that, at the very weakest, M may be of either sign for physically realizable
molecules. This implies a definite disagreement with the precept of the w-technique
which assigns a positive coefficient to the dependence of 4 on charge density
difference independent of molecular structure [&].

The origin of this disagreement may easily be traced. That o should not only
have a positive value (to make —mf° positive), but a sizable one at that, could be
semi-empirically justified by approximating the Coulomb integral of a free sp?
carbon atom by the average of the ionization potential and electron affinity. One
then relates the Coulomb integral change presumably undergone by this atom to
the Aq change accompanying ionization of its p-electron through the basic w-
technique equation [9],

— 3 [ (O0) + A (Cop)] + % [1(Cip) + A (Cp)] = 12 6V

sp?
= (xo+ — oew) = 0fgy — q+) = 0f°.

This approximation for the atom yielded a value of ~ 5 for @ which was known
to overestimate charge redistribution effects in molecular systems and more often
than not to cause divergences in the cycling scheme (values of ~ 1 appeared
empirically to be more satisfactory). It was quite reasonably assumed that other
atoms bonded to the site of ionization would buffer the gross Coulomb integral
change and hence lower the value of w.

The buffer effect exercised by donation of electrons to shield the charge deficient
site must be of a short range nature if a single value of @ is to apply to hydro-
carbon molecules generally. On this basis and to avoid introducing redundancies
in the z-electron calculation, most of the shielding effects must be postulated to
arise from the g-framework, i.e., to be m-induced o-effects. Quite obviously, since
molecular geometries vary so widely, it is impossible for an average of m-induced
7-effects, either in the sense of donation of shielding electrons or in electron repul-
sions o appreciably contribute to w. We must conclude therefore, in light of the
excellent success the w-technique has in correlation of conjugated hydrocarbon
ionization potentials, that the Hiickel method itself must be capable of averaging
much of the m-effects upon certain molecular properties, but that there is no
justification in assuming any direct correspondence between inclusion of repulsion
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terms in the Hamiltonian and w-technique applications in their absence. This
conclusion agrees with a similar deduction obtained from purely numerical results
on ionization poteutials previously [&].

To follow the consequences of the preceding arguments a bit further, it iz of
interest to note that the energy changes in the o-framework attendant upon the
short range shielding of a m-charge deficient site could very well be constant or
essentially so, in accord with the constant lowering of the free atom w over all
molecules of concern, and hence to be incorporable in the «° term in the ionization
energy. The value of &% found empirically in the ionization correlation is —9.88 ¢V,
compared to —7.2 eV for x¢ for free sp? C [10], or an effect of —2.68eV. If we
make the assumption that the deshielding effect in the electron affinity process is
of the same size, «® would be —4.52 eV, and the heretofore uncorrelated electron

affinities of hydrocarbon molecules now are quite well fitted by 4 = — «f —
— <mw — %1— w> (°. See Eq. (21) of Ref. [8 (part I)] and Tab. 3 therein, and Tab.
6 here where the deshielding effect is included. It is of further interest to note that

Table 6. Hlectron Affinities of Hydrocarbon Molecules in eV

Molecule w=14 Pople Experimental
a% = ~4.52eV

Ethylene -2.02 ~1.81

Benzene -1.04 ~1.40 —-0.54

Butadiene —0.48 ~0.3¢

Allyl Radical +0.58 +0.24 +2.1

Benzyl Radical +1.14 +0.69 +1.8

Styrene -0.20 ~0.29

Methyl Radical -1.99 ~1.03 +1.1

Triphenylmethyl +1.35 +1.65 +2.41

Biphenyl -0.44 -0.37 +0.41

Naphthalene -0.04 ~-0.14 +0.65

Phenanthrene +0.08 ~-0.06 +0.69

Anthracene +0.48 +0.64 +1.19

now I + A =— (0% + %) + 2 wf® = 8.49 eV, constant for all hydrocarbon and
substituted hydrocarbon molecules where the theoretical method applies, and in
excellent agreement with the value of 8.47 obtained in the Pople method [11].

The foregoing discussion brings us most naturally to an examination of the
performance of the explicit electron repulsion method under similar circumstances.
The Pople method is known to yield satisfactory correlations of ionization poten-
tials for alternant hydrocarbon molecules and is felt to be, in the absence of a
comparable body of experimental results, similarly reliable for electron affinities.
However, the method as generally applied invokes Koopman’s Theorem ; when the
energy difference is taken between the two states, both optimized with respect to
the 8.C.¥. conditions, the results are rather poorer. We may therefore conclude
that this method as generally applied also does some interaction averaging, most
of which is probably incorporated in the U’s, the electron-core interaction energy,
a term which contributes to the energy difference only in processes where the
number of electrons changes.
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A further and perhaps more striking insight into the differences predicted by
the explicit vs. averaged electron repulsion methods for charge density, is to be
found upon consideration of molecules having structural branch points or tertiary
sites. These are sites which are bound to three other conjugating sites in the mole-
cule. Where the w-technique, in its usual manner, prediots levelling of the charge
density differences arising from the zeroth-order Hiickel MO’s, in the PPP method
greater charge density is often computed for these tertiary sites in the carbonium
ions than in the neutral parent molecules [2]. Analogously, less density is found at
these sites in the carbanions than in the neutral parents. These apparently anoma-
lous results arise from a combination of two factors which may be precisely
examined for case IV, m = 3; extensions to both the hypothetical higher branched
molecules and to molecules with more than two types of sites are easily visualized
from the results of this case. In accord with our earlier observation concerning
geometric proximity of unlike versus like sites in the molecule, M is negative for
this molecule. From Tab. 1,

Voo + myy | TS
2m g > (E(m 1) —+ 121 yz,z+2> )

independent of whether the peripheral groups are formally bonded or not. (So are
the general conclusions independent of this bonding, although the quantitative
results will differ.) Hence, the PPP method will predict a greater charge disparity
than will the Hiickel method for the perturbed neutral molecule.

In the carbonium ion whose peripheral groups are not bonded to each other,
because the highest filled MO is nodal at the tertiary site numbered as 1 in Tab. 1,
the Hiickel MO’s predict A¢% = —1/3 (or —1/m for other number of branches).
The complete closed form calculation proceeds as follows.

Here, because only one MO is not nodal at the branch site, a single 4 pertains:

At = K + MAg,, — 3(2) ps+ a3 »
Ay =~ %+ B A2 Fry = =} + 24 3)3Fr — B+ AL,
Aplsy = T+ @A 2T = & A% [6 Y3F1y = A + 1),
1
Fio= P12~ 2 Pravra; Pae=r

It should be noted that Ap is linearly related to Ag here; hence M’ will represent
an exact rather than approximate cycling variable:

AW =K'+ M’ A¢,
M = M — ypafd = 32 4+ [—6y1s + 2y5]/4 — yasf4
K = K — ypld = — [ =215 + 2y3][4 — yuf4 -
Noting that all internal angles in this molecular are 120°, assuming benzene bond
lengths and by recourse as above to the summation of geometric progressions,

w  BHK'A  —1/3+(-0445eV)(-0856eVY)
A0¥ = G 3pa = 1 (—4.326V) (—0.0856 oV ) 0.4685 .
Therefore, with inclusion of the w-technique values (w = 1.4):

Hiickel ¢4 = 1.0000, ¢l = 0.6667 ;
PPP ¢ —1.0814, ¢ = 0.6329 ;
wtech. ¢ =0.9125, g5 = 0.6958.
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It is now apparent why the branch site exhibits excess charge density in the
carbonium ion in the PPP method. Not only is M (move correctly M) negative
which enhances the zeroth-order charge density difference, but because the
branch site is nodal in the MO from which the ionization occurs, the zeroth-order
density for this site is unaffected by the ionization. Hence, since a unit charge
exists before electron repulsion operates to increase this density, ¢;4 must be
larger than one. It might be mentioned that this anomaly could be mitigated in
some cases if K (or K') were large enough to decrease the zeroth-order density
difference which appears in the numerator of the final A¢% expression — here it
is roughly 3-times too small. Moreover, we may conclude that branch sites are not
necessary to affect such a charge pile-up; as long as a site is nodal or near-nodal in
the ionization-MO and M’ is negative, the same result may be obtained. For
example, in the allyl radical, ¢73 = 1.065, ¢35 = 0.467. Conversely, we may
conclude that if the tertiary site in a molecule is not nodal in the highest filled MO
of a neutral molecule, or if M’ is not negative, or if K’ is sufficiently large, then
s-charge build-up may not be predicted in the carbonium ion.

b) Self-Consistent Bond Orders from Closed Form Expressions

The trans-butadiene molecule provides a good example for demonstration of
the term-by-term analysis of bond order effects possible with the closed form self-
consistency expressions developed here. The case is of particular interest in that
intimate comparisons may easily be drawn with the corresponding results of the
Hiickel and w-technique-type methods which are known to overestimate the
central bond order and hence to underestimate the corresponding bond length.
This particular failure has been assumed symptomatic, and rightly so, of the
inability of the averaged repulsion methods, parametrized for other observables,
to correlate sr-electronic effects on molecular structure.

Trans-butadiene is a case ITI member with m = 2:

A — MAgt + NAApt
N;= i (Y13 T Yas) COS ],

AAP" = (P13 — Pl — (P13 — P2g)® = Ap? — Ap°,
B =1~ Prs + 7 (13 + yau) Ap cO8 77,

Fio=Fig + F, cosmj .

Since Fyy, = — % Py, Y14 a0d pyy = 0, then

Ty = Fopy = F ,
Gy = — Gy = mBllmPR + 4 (FPIE
H=H,=4 (y)zl[(m‘g)z + 4 (F)7

oo

Further, since Ag = 0, we observe that A} = — J; and
At = H Ay + Hy AL = H(A, + A,) = 0.
Hence, inductively, A4 = — A} and Agt = 0. Therefore
Apt =G+ Hi A, — Gy — Hy Ay — 2(Gy + H, Ay) .
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We observe then that Ap' = 26, and by summation of the geometric progressions
involving Apt and A,
26, ~ 2HN,Ap®  Ap' — 2HN,Ap"

1-2HN, 1-2HN,

Ap™ =

Recalling that piy + p, = 0 we can extract p,; at any stage, i.e., ps = 5 Ap™®

The value so obtained is essentially a static self-consistent ﬁeld result, i.e., the
bond order corresponding to the fixed geometry assumed for the carbon atoms in
butadiene. The first two row-blocks of Tab. 7 show the results obtained for p,,
and p,, and associated quantities assuming the molecule has equal bond lengths of

Table 7. Bond Orders and Associated Quantities for trans- Butadienes

Method footnote pl, P ph % 2HN, F(eV) AF(eV)
static, v 0.911 0.911 0.398 0.366 0.383 -—5.655
bonds equal }b 0.911 0919 0.394 0.361 0.381 -5.715 0.48

c 0.933 0.389 0.354 0.378 -5.796
static, a 0.937 0.940 0.342 0.280 0.373 -6.116 0.92
short-long alternation }Cd 0.962 0.337 0.274 0.369 -6.209
dynamic ce 0.930 0.960 0.351 0.278 0.432 -6.240 1.05
Hiickel, static 0.894 0.894 0.447 0.447
Hiickel, dynamic t 0.918 0.922 0.395 0.387 0.116  1.0824° —0.025°

a The first three sets of results are from the closed form PPP relations, the last two are
from the Hiickel and modified Hiickel methods.

b Assuming & is converged after a single cycle; the second row result is obtamed with the
second cycle result for &

¢ Obtained by correcting P15 = Pio(l = (Bl P)? + 4 F2] AP®) and recycling to obtain the

new (Pyz — Pag)-
Ay, =756V, py ——716V&nd7/24—396V Bz = —2.6eVand fi; = ~2.1¢€V.

e Starting with bonds equal and assuming f = f°8/8° = 5°(0.195 + 0.08 p)/S°, and
p(neighbors) = 7.30 (1 +1.40(0.09) (p — 2/3)), the latter by assumption of reciprocal dependence
of p upon r and fitting parameters to benzene and ethylene distances. While these are some-
what cruder than currently prescribed variation methods [1, 6, 12], they provide the desired
linear p-dependence. Note as well, v,, is assumed constant in the dynamical calculations since
79, is essentially independent of the degree of bond alternation.

f Assuming the same dependence of § upon p as in footnote e.

benzene length (8 = — 2.39 €V) and also assuming the terminal bonds are shorter
and the central bond longer so as to correspond to 8,, = — 2.6 and 5,3 = — 2.1 eV.

The results obtained employing equal bond lengths and short-long alternation
in the static case show significant differences. We observe that a central bond order
of 0.274 is obtained when alternation is assumed compared to 0.354 when all bonds
are held at the benzene bond length. The former is roughly 40%, smaller than the
zeroth-order Hiickel result while the latter shows only about half this dimunition.

In contrast to these static results, one may obtain a set of truly self-consistent
results, within the limitations of the method, by obtaining dependences of the
resonance and repulsion integrals upon internuclear distance and thence upon
bond orders through semi-empirical relations among these quantities. The linear
semi-empirical relations employed are detailed in the footnotes to Tab. 7 and were
obtained by Taylor expansions about first-order static results previously obtained.



HMO and PPP methods: Closed form SCF expressions 365

What this dynamical procedure does operationally is merely to change the linear

parametric dependence of p;, upon F and wice versa, and of Ap,; upon 4 and F.
The most important differences from the static results are detectable upon exami-
nation of 2HN, and the incomplete alternation predicted by the Hiickel zeroth-
order results themselves. Note the closed form expressions are not altered between
the static and dynamic methods.

We find that the dynamic self-consistent procedure starting at the equal bond
length configuration can produce pf; and pf; values which are in good agreement
with previous electron repulsion included calculations on butadiene [3, 13] and
very close to the alternant short-long static system previously examined. Further,
and most important, these results are essentially independent of the starting
configurations; only in the event of such a distorted initial configuration so as to
invalidate the Taylor expansions will this independence not apply. The final
dynamical result is partly due to the first cycle correction which already recognizes
considerable alternation through dimunition of #,f and a simultaneous increase of
&, and partly to the comparatively large self-consistency factor 2HN,. The

latter, in turn is large because the linear coefficient relating A to A4p, which is
(Y13 + Y240)/4, is enhanced by the § and y,, dependences upon AA4p; i.e., N, which is
2.8 ¢V in the static systems is 3.29 eV when the § and y variational dependences
are included.

By much the same token, the dynamical Hiickel results can not produce the

same degree of alternation, principally because of the weak proportionality of A
upon AAp arising from the lack of repulsion terms in the proportionality constant.
The entire dependence falls upon the §-upon-p linear factor, which is the same
incidentally as that employed in the previous calculations but which constitutes
only of the order of 10--209%, of the total value of N, in those calculations*. The
Hiickel value for 2HN, is seen consequently to be only about §—3 the size of the
corresponding factors in the electron repulsion cases. The difference between the

methods is further emphasized by examination of the A, values, which are in
essence orbital energy differences between the external and internal sites in the

butadiene molecule. When electron repulsion effects are included A, is about
1 eV, contrasted to about 0.05 eV when these terms are neglected or averaged for
the individual sites. As a final comparison, it is of interest to compute the bond
lengths corresponding to the couverged bond orders obtained by the various
methods using the reciprocal relationship employed in the dynamical calculations,
1fr = 0.6557, + 0.0916,p. The results, all in Angstroms, are for the PPP method,
719 = 1.34;, 715 = 1.464; from the self-consistent Hiickel method, r;, = 1.35, and
13 = 1.44¢. The value of ry; from the zeroth-order results in 1.43,.

It is quite apparent from scrutiny of this example why the Hiickel method as
applied cannot produce the same effects upon cycling as can the repulsion-included
methods. There is no direct means within the former to recognize the geometric
differences which exist among molecules with regards to such features as terminal
sites, multiplicity of bonding to any given site, ete. Such features can obviously be

* MurLigex and co-workers many years ago computed somewhat greater alternation by
this method but only upon assumption of considerably steeper dependence (roughly twice) of
B upon r and hence upon Ap [14].
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of varying importance depending upon the molecular property examined. Differ-
ences in success of parametrization must also be expected in the simple theory
depending upon the molecular property.

It does not seem unreasonable then to expect that properties which are directly
dependent upon the cycling variables, such as charge densities, bond orders and
site-site polarizations would be more sensitive to these geometric factors than less
direct quantities such as ionization potentials, resonance energies and spectral
transition energies. The latter are considered indirect only in the sense that they
are properties of the entire molecule in more than one state rather than of individ-
ual sites in a given state. By the same token, it is not surprising that we are
better able to parametrize the Hiickel method for energy differences than for
electron distributions. Conversely, we must expect that correct predictions for the
latter might require either somewhat better detailed methods of averaging, e.g.
geometric dependence for w, or parametrization at a different stage in the calcula-
tions. Fixing § and its relationship to intersite distances for bond order computa-
tions alone, without regard to the different relationships which may hold for
correlation of other observables is an example of the latter procedure.

Finally, we may conclude, accepting the electron repulsion included methods
as more precisely representative of the bond order-bond length conditions which
exist in alternant hydrocarbons, that the charge densities computed by the Hiickel
method are less reliable than those forthcoming from the repulsion included meth-
ods, and, that when a substantial difference exists between the results of the
different methods, those of the latter be more readily but by no means completely
authoritatively accepted.

¢) Concurrent Charge Density and Bond Order Effects in Closed Form

As a final illustrative example of the possible range of utility for the closed
form expressions developed here, we may examine the quantum chemical MO
representation of a recently synthesized member of the radialene family, tri-
methylenecyclopropane [15]. This molecule is of case I1I, with m —= 3. We recognize
that this is not an alternant hydrocarbon, and, since the obvious strain which
exists in the ring and as well the hybridization of these sites is not fully accounted
for, suggest that the results be taken with the proper degree of scepticism that
such simplifications merit.

Assuming all bond lengths equal and 1.40 A (B, = B3 = — 2.39 eV), then
Ag® = 0.1249, Ap°® = (pls — Pls) = 0.7695, pdy = 0.8320 and pl, = — 0.0624. With
5, computed as 3.76 eV from the unit point charge approximation [2] and y,, =
=4.90-2/1.932 = 5.07¢V, we find M = — 1.1,eV. The first order results are
Ag = 0.0553, Ap = 0.6912, p;, = 0.8677, p;, = — 0.0593 and the rapidly convergent
closed form expressions yield Aq = 0.0561 and Ap = 0.685. An M’ of ~ — 0.6 is
found to reproduce these values, with neglect of sizable AAp = (pyz — Py — Ps +
-+ p5), again because of phase averaging compensations over the Ays.

These results indicate a preference for charge to concentrate slightly in the

terminal atoms, i.e. g, = 1.028 and ¢, = 0.972. The molecule should also exhibif
distinet short and long bonds respectively in the branches and in the ring (p;, =
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= 0.868 and py; = 0.342)*%, although no excessive trust should be put in the quanti-

tative results since we here have only obtained the static results corresponding to
initial assumption of equivalent bond lengths. It appears that the dynamic method
would result in a further decrease of the charge density difference and an increase
in the degree of short-long bond alternation. The concentration of charge, it should
further be noted, is determined mainly by the non-alternant nature of the molecule
(viz., A¢®), with a distinct amelioration due to the electron repulsion effects exercis-
ed in terms of a decrease in the (-values, and also, less importantly, in a negative
M. Again we encounter M as negative; in this case, however, the self-consistency
procedure is seen to parallel that which would be obtained in the w-technique
which, as we have seen, apparently always works to smooth charge distribution
irregularities.

Perhaps the most important additional point which may be gleaned from
study of this example is in illustration of the apparent general efficacy of approxi-
mating the coefficient of particular Ap in the same manner as an effective M (M)
could be approximated for Aq. This coefficient could then be utilized in develop-
ment of closed form relations for Ayp.

From Eq. (41), in analogy to the development in Eqs. (42-—46),

11 . 2mil . _ml
Apseres = Constant + Mm 1AQtz CO8 ——— [Fi) — (@dm) 3 (ya0040 +
L il 71
2712 )
+ ) Atz 3 (0 2 cos 200 )7 (48)
1

— (dm)™t (ye,oL+2 + Y1,2041) Aipé,gm.z Z (COSa T /5:1) .
?

Upon recognition of the partial phase cancellation over ¢ for the Ag term and over
land ¢ for the separated bond order terms, we obtain:

AP ar.40 = Ap5 sz o — Constant = KBr/(1 — BLN').

Here, in straightforward analogy to Eq. (47), Bris — m= 3 cos? (2wiL|m)|F;
and N’ is the AAp} ;. scoefficient obtained by averaging so as to produce the
same result for AAp$h; .. as was obtained in Eq. (48) which is exact, i.e.,

N = AAp§)1 . » (exact)] By -AApf o (exact) .

In the present example, there is only a single bond order difference to consider
(i.e. Pz — Poy). Hence, N' will have only to incorporate the Ag term. It is of interest
to note then that while the exact N = (5 + v,,)/2 is 553 eV, N’ is 4.8 ¢V and
Ap(?) (exact)is 0.6841, while Ap(3) obtained using N’ is 0.6840. As was reported
previously, a value of M’ ~ — 0.6 eV could reproduce the Agq values obtained by
conventional cycling with M = — 1.1 eV and upon retention of the Ap-term.

d) Hxtensions of the Formalism

While major emphasis has been placed here on the computation and compari-
son of charge densities and bond orders, the relations exist in Egs. (11), (29) and

* The bond lengths corresponding to these bond orders are by the reciprocal r-p relation-
ship previously employed, 7,5 = 1.6 A and r;; = 1.46 A, Conventionally cycled PPP method
results are 1.35 and 1.46 A respectively [16].
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(30) to compute the orbital energies for the special molecular cases, and through
the self-consistent wavefunctions themselves other expectation values. Further
simplifications of the closed form expressions and extensions to other than the
special molecular cases for some of these quantities are presently being sought.
These efforts are directed along the lines followed for ionization potentials and
electron affinities in the w-technique analysis previously described.
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